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The mechanism that drives a metal-insulator transition in an undoped quasi-one-dimensional Mott
insulator is examined in the framework of the Hubbard model with two different hoppings t?1 and t?2

between nearest-neighbor chains. By applying an N?-chain renormalization group method at the two-loop
level, we show how a metallic state emerges when both t?1 and t?2 exceed critical values. In the metallic
phase, the quasiparticle weight becomes finite and develops a strong momentum dependence. We discuss
the temperature dependence of the resistivity and the impact of our theory in the understanding of recent
experiments on half-filled molecular conductors.
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The remarkable properties of strongly correlated sys-
tems near a metal to Mott insulator (MI) transition stand
out as one of the richest parts of the physics of strongly
correlated systems [1]. This takes on particular importance
in low dimensional materials at half-filling, and especially
in one dimension, where spin and charge excitations are
well-known to be invariably decoupled, an effect that
receives experimental confirmation in the one-dimensional
(1D) oxide material SrCuO2 [2]. How this picture modifies
when the hopping of electrons in more than one spatial
direction progressively grows and a higher dimensional
metallic ground state becomes possible is a key issue that
remains poorly understood. This problem finds concrete
applications in organic molecular compounds, which con-
stitute very close realizations of 1D systems. This is the
case notably of �TTM-TTP�I3 and �DMTSA�BF4 which, as
genuine half-filled band materials due to the monovalent
anions I�3 and BF�4 , see their Mott insulating state being
gradually suppressed under pressure [3,4]. Quite recently,
resistivity measurements on �TTM-TTP�I3 at high pressure
revealed that the temperature scale for the Mott insulating
behavior is suppressed by an order of magnitude down to
TMI � 20 K at P � 8 GPa of pressure, with a metallic
ground state expected to occur above 10 GPa [5]. It is
the objective of this Letter to propose a theoretical descrip-
tion of this transition.

Bosonization, renormalization group (RG) approaches
to the 1D Hubbard model in weak coupling and its exact
solution from the Bethe ansatz [6–8], show that electron-
electron umklapp-scattering processes are a key ingredient
that promotes the existence of a Mott insulating ground
state at half-filling. The difficulty underlying the mecha-
nism of the MI transition in the quasi-1D case resides in the
fact that the decoupling of spin and charge excitations on
the metallic side of the transition at higher dimension does
not occur, namely, when Fermi-liquid quasiparticles exci-
tations appear. This issue has been addressed theoretically
by an RPA treatment of interchain hopping [9], in which its

feedback effect on the Mott gap is neglected for the self-
energy of the one-particle Green’s function. The RPA
results shows the existence of a Fermi-liquid metallic state
with electron and hole Fermi-surface pockets when the
interchain hopping exceeds a critical value. The important
role of this feedback effect has been pointed out recently
from the use of dynamical mean-field theory, extended to
include the influence of 1D fluctuations (the chain-DMFT)
[10]—an approach expected to be workable in the strong-
coupling regime. In the weak-coupling regime, however,
the electron-electron umklapp scattering and the character-
istics of its coupling to nesting of the whole Fermi surface,
play a key role [6–8], both for the Mott insulating state and
for the possibility of the MI transition that emerges in the
quasi-1D case. Transverse dispersion which has a tendency
toward the realization of the deconfined metallic states
[7,8,10] is in general overlooked in the calculation of one-
particle Green’s function from mean-field-like approaches.
The two-loop RG approach avoids such an approximation
and treats the Fermi-surface nesting conditions properly.
These can be strongly altered in the quasi-1D case, espe-
cially in the presence of frustration in the electron kinetics.

In this Letter, we apply an N?-chain RG approach to
quasi-1D half-filled system as developed recently at the
two-loop level [11,12]. The momentum dependence for
nesting of the whole Fermi surface and that for couplings,
including umklapp scattering [13–15], are taken into ac-
count in a systematic way in the calculation of one-particle
Green’s function and four-point vertices [11]. The com-
bined impact of correlations and nesting frustration in-
duced by interchain hopping on the transverse momen-
tum dependence of the quasiparticle weight is obtained in
weak-coupling regime.

We consider the quasi-1D half-filled Hubbard model on
an anisotropic triangular lattice [Fig. 1(a)], with the trans-
fer energies tk � jt?1j, jt?2j (tk is the energy along chains
and t?1 and t?2 are those between chains). Our Hamilton-
ian, with the on site Coulomb repulsion U is given by
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The operator cj;‘;s denotes the annihilation of an electron
on the jth site in the ‘th chain with spin s, and nj;‘;s �

cyj;‘;scj;‘;s �
1
2 . Here ‘ � 1; . . . ; N? is the chain index. We

take the continuum limit along the chain direction, whereas
in the transverse direction we consider a finite system
having an even number of chains N? with the boundary
condition cj;N?�1;s � cj;1;s. By applying a Fourier trans-
form, the kinetic term can be rewritten as H0 �P
k;s"�k�c

y
s �k�cs�k�, where k � �kk; k?� and the energy

dispersion is given by "�k� � �2tk coskk � 2t?1 cosk? �
2t?2 cos�kk � k?� ��. For jt?ij 	 tk, the right- and left-
moving electrons in the 1D case are well-defined due to an
open Fermi surface [Fig. 1(b)] and the shape of the Fermi
surface can be parametrized by the transverse momentum
k? [11]. To lowest order in the interchain hoppings t?1 and
t?2, the Fermi surfaces for right ��� and left ��� moving
electrons, as a function of k?, are given by k
F �k?� �

��=2� 
 �t?1=tk� cosk? � �t?2=tk� sink? and the chemi-
cal potential is � � O�t2?i�. By considering the weak-
interacting case and neglecting the k? dependence of the
velocity, the linearized dispersion used in the RG method
takes the simple form: "p�k� � pv�kk � k

p
F�k?��with v �

2tk and p � 
.
We follow the formulation of the two-loop RG method

of Ref. [11] and first introduce the g-ology coupling con-
stants [see Eq. (2.8) in Ref. [11] ]:, namely, the backward
(g1?), forward (g2?), and umklapp (g3?) scatterings with
opposite spins, and the forward scattering (gk) and um-
klapp (g3k) scatterings for parallel spins. The coupling
constants are renormalized differently, developing an ex-
ternal—transverse—momenta dependence in the vertex

corresponding to a patch-index dependence; that is, g� !
g��q?;k?1;k?2�

, where k?1 and k?2 are the transverse mo-
menta for the right-going fermions, and q? is the momen-
tum transfer [11]. The magnitude of the initial couplings
are given by g1? � g2? � g3? � U and gk � g3k � 0.
The RG equations are derived by scaling the bandwidth
cutoff ��’ 2�tk� as �l � �e�l, where l is the scaling
parameter [11]. The explicit forms of the two-loop RG
equations for all coupling constants in the case t?2 � 0
are given in Ref. [11]. We solve here these two-loop RG
equations numerically for a system with N? � 16. For
even N?, the solution of the RG flows indicates the exis-
tence of a finite spin gap in the low-energy limit, which is
expected to vanish in the infinite N? limit. The character-
istic scale lN? above which finite size effect would appear
can be roughly estimated to be lN? �
ln��=jt?i sin�2�=N?�j�. For N? � 16 and t?1=tk � 0:1
this gives lN? � 5, which is sufficient to obtain the MI
transition without finite size effects for the present choice
of parameters U=tk � 2 or 1.5.

For the bipartite lattice (t?2 � 0), the system remains
always insulating even for large t?1 [11]. This is due to
perfect nesting condition for the Fermi surface. In this case
the interchain hopping t?1 is relevant and becomes large
under scaling procedure, and some umklapp couplings
become small. However, a macroscopic number of these
couplings remains relevant due to perfect nesting at vector
Q � ��;��. In the case of large t?2, these relevant um-
klapp couplings are strongly reduced and all umklapp
terms remain weak. The charge gap then collapses and a
metallic state with a Fermi surface emerges as a conse-
quence of nesting deviations that are introduced by large
interchain frustration.

One-particle properties are best studied from the quasi-
particle weight zk? . In the RG method at the two-loop level
[11], the k? dependence of the self-energy is taken into
account in a non perturbative way. This contrasts with the
chain-DMFT, which treats the one-particle self-energy as a
one-chain k?-independent quantity of the one-particle
Green’s function [10]. In the RG formalism the transverse
momentum dependence [11] is taken into account explic-
itly, and the quasiparticle weight of the one-particle
Green’s function takes the form zk? � znk?z

u
k?

, where znk?
and zuk? are the contributions coming from the normal and
umklapp parts of the scattering, respectively. Here, one can
focus on the umklapp contribution zuk? , since znk? remains
finite for l < lN? in the metallic state. The explicit form of
zuk? reads [11]

 zuk? � exp
�
�
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FIG. 1 (color online). (a) Lattice geometry of the present
model. (b) The corresponding Fermi surface where the case
for N? � 16 is shown.
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where Gc�q?;k?;k0?�
� g3?�q?;k?;��k0?�

=�2�v�. The quantity
Ju1�q?;k?;k0?�

is a cutoff function depending on the transverse

dispersion [11] given by Ju1�q?;k?;k0?�
�1 for jA0q?;k?;k0?

j	�

and Ju1�q?;k?;k0?�
� 0 for jA0q?;k?;k0?

j � � where A0q?;k?;k0?
�

2t?1�cosk? � cos�k? � q?� � cosk0? � cos�k0? � q?�� �
2t?2�sink?� sin�k? � q?� � sink0? � sin�k0? � q?��. The
k? dependence of the umklapp-scattering contribution to
zk? for several values of t?2 at fixed t?1=tk � 0:1 is shown
in Fig. 2(a). For weak frustration t?2�<tc?2�, this quantity is
small showing the existence of an insulating phase with no
low-energy quasiparticles. On the other hand, for strong
frustration t?2�>t

c
?2�, it takes sizable values and shows a

strong k? dependence. In the proximity of the insulating
phase, the quantity zuk? presents a broad maximum around
k? � 
�=2, which behavior implies the emergence of
sections of Fermi surface [9], or ‘‘cold‘‘ regions around
k � �kpF�
�=2�;
�=2� [13]. The dips or ‘‘hot spots‘‘ in
the quasiparticle weight correspond to regions of the Fermi
surface where the nesting, within 2�=N? accuracy, remain
the most favorable. In the perfectly nested case no Fermi
surface is found for any value of U. The overall profile is
then intrinsically linked to the momentum dependent nest-
ing properties over the whole Fermi surface [15]. These are
not taken into account in previous analyses [9,10], which
reach different conclusions in the weak-coupling regime.

The boundary for the metal-insulator transition can be
determined analytically by noting that the metallic phase of
the RG analysis is linked to the irrelevance of umklapp
scattering. The metallic phase boundary can thus be ob-
tained when the energy scale of imperfect nesting for
umklapp scatterings becomes comparable to the energy
scale �1D

� [ /
��������
tkU

p
exp��2�t=U�] of the 1D Mott gap.

By noting that the nesting vector of the particle-hole loop,
which couples to umklapp, is given by Q � ��;�
 2��
with tan� � t?2=t?1, the degree of the imperfect nesting
(the amplitude of the quantity A0�
2�;k?;k0?

) becomes��������������������
t2?1 � t

2
?2

q
sin2�. The phase boundary for the MI transi-

tion is then determined by the condition

 

t?1t?2��������������������
t2?1 � t

2
?2

q � c�1D
� ; (4)

where c is a numerical constant being of the order of unity.
The small difference between the numerical results and the
above analytical expression comes from the renormaliza-
tion of interchain hopping due to the normal scattering
processes. The Mott gap is also renormalized by interchain
hopping. The ground-state phase diagram in the (t?1=tk,
t?2=tk) plane is shown in Fig. 2(b), where the dotted line
denotes Eq. (4). The ambiguities in the cutoff functions of
the RG [11,14] prevent us from obtaining a precise location
of the phase boundary.

The Mott transition has also been addressed in two-
dimensional Hubbard model on an anisotropic triangular
lattice with nearest-neighbor hopping t and next-nearest-
neighbor hopping t0 [16]. The present model (1) can be
connected to the two-dimensional Hubbard model by tak-
ing tk ! t, t?1 ! t, and t?2 ! t0. While our approach is
restricted to the small interchain hopping, the metal-
insulator transition obtained here for finite frustration is
consistent with the numerical results in two dimensions.

From the solution of the scaling flows of the umklapp
scatterings, the temperature dependence of the resistivity
can be qualitatively calculated from the memory function
approach combined with the RG method by using l �
ln��=T� [8,17]. By extending the approach to the quasi-
1D case, the perturbative expression of the conductivity
reads ��T� / N�3

?

P
q?;k?;k0?

G2
c�q?;k?;k0?�

�l�e�l. While this

formula is not valid for large t?i=T [17], it will depict
the qualitative temperature dependence of resistivity.
Typical behaviors of the resistivity for �1D

� < t?1, obtained
from this formula, are shown in Fig. 3(a). At high tem-
perature (T > t?1, t?2), the effects of interchain kinetics
are masked due to the thermal fluctuations where the
Tomonaga-Luttinger (TL) liquid behavior is reproduced.
At low temperature, the insulating behavior can be seen for
small t?2, while the metallic behavior is found for strong
frustration (large t?2). A finite-temperature phase diagram,
as a function of t?2, can be obtained from this behavior, as
shown schematically in Fig. 3(b). At high temperature, the
TL liquid state is realized, which is followed in the cross-
over region by the development of a Fermi surface. The
effect of the frustration is yet masked by thermal fluctua-
tions; i.e., this region can be described effectively by a
nested Fermi surface. At further low temperature, the state
moves to the Mott insulator or the Fermi-liquid (FL) state
depending on t?2. In the FL state, the effect of t?2 becomes
prominent and the nesting conditions of the full Fermi
surface are altered. It can also be seen from Fig. 3(a) that
the characteristic temperature TFL at which the crossover to
the metallic FL state takes place increases with t?2. For
�1D
� > t?1, on the other hand, a direct crossover from the

TL liquid state to the Mott insulator would be seen, and
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FIG. 2 (color online). (a) Umklapp-scattering contribution of
the quasiparticle weight zuk? for U=tk � 2 and t?1=tk � 0:1, with
several t?2. (b) Ground-state phase diagram on the plane of
t?1=tk and t?2=tk. The dotted line denotes the condition of
Eq. (4).
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neither the FL state nor the crossover region appears in the
phase diagram.

We would like to discuss here the impact of our results
on the understanding of the phase diagram of the quasi-1D
molecular compound �TTM-TTP�I3 under pressure [5].
The extended Hückel calculations [18] indicate that there
are two kinds of interchain transfer integrals, namely t?1 �
9 meV, and t?2 � 6 meV, which are small compared to
tk � 260 meV. This emphasizes the pronounced hopping
frustration of this quasi-1D compound. The Coulomb re-
pulsion between electrons on the same molecular orbital of
TTM-TTP is weak, and the estimated magnitude, U �
0:57 eV [3], leads to the magnitude U=tk � 2:2 and then
the small 1D Mott gap �1D

� =tk � 0:24. From these figures,
the energy scale for imperfect nesting [left-hand side of
Eq. (4)] turns out to be about 5 meV. As for the magnitude
of the charge gap at ambient pressure, we obtain �1D

� �

60 meV, in fair agreement with the measured activation
energy of resistivity at ambient pressure [3]. The band-
width goes up under pressure, which decreases the ratio
U=tk and in turn the charge gap. To reduce the gap down to
the scale of imperfect nesting, one has roughly to double
the hopping amplitudes. This represents a reasonable in-
crease of band parameters under 8 GPa of pressure, and is
consistent with the existence of a MI transition in
�TTM-TTP�I3 [5]. Finally, we note that at ambient pres-
sure, below Tc ’ 120 K, this compound develops a non-
magnetic state (likely of the spin-Peierls type), which
comes with an intramolecular charge disproportionation
[4]. However, since the resistivity already shows an insu-
lating behavior above Tc, the present system can be indeed

considered as a Mott insulator rather than a charge-ordered
insulator, and the charge disproportionation can be ac-
counted for by dimerization of the tilted TTM-TTP
molecules.

In summary, we have examined the effect of interchain
frustration on the half-filled quasi-1D Hubbard chains by
applying an N?-chain two-loop RG method. The triangu-
lar lattice geometry of the system is found to be a key
factor in the stability of the Mott insulating state and
whenever the alteration of nesting conditions due to frus-
tration in the transverse hoppings reaches some threshold a
metallic state is restored. Our results find direct application
to the description of the frustrated quasi-1D half-filled
compounds.
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FIG. 3 (color online). (a) Temperature dependence of the
resistivity for U=tk � 1:5 and t?1=tk � 0:1, with fixed t?2=tk �
0, 0.02. 0.04, 0.06, 0.08, 0.10 (from top to bottom), and �0 �
����. T� is the characteristic temperature of the Mott insulator,
at which the resistivity takes a minimum. TFL is the crossover
temperature to the metallic Fermi liquid, where the power of
��T� exhibits a change (guided by the eyes). (b) Schematic
illustration of the t?2-T phase diagram. T0

FL is the bare tempera-
ture scale for imperfect nesting [left of Eq. (4)], which is reduced
to TFL due to the correlation effects.
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