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We perform Young’s double-slit experiment to study the spatial coherence properties of a two-
dimensional dynamic condensate of semiconductor microcavity polaritons. The coherence length of
the system is measured as a function of the pump rate, which confirms a spontaneous buildup of
macroscopic coherence in the condensed phase. An independent measurement reveals that the position
and momentum uncertainty product of the condensate is close to the Heisenberg limit. An experimental
realization of such a minimum uncertainty wave packet of the polariton condensate opens a door to
coherent matter-wave phenomena such as Josephson oscillation, superfluidity, and solitons in solid state
condensate systems.

DOI: 10.1103/PhysRevLett.99.126403 PACS numbers: 71.36.+c, 42.50.�p, 78.47.+p, 78.67.�n

Simple, yet profoundly connected to the foundation of
quantum physics, Young’s double-slit experiment has been
a benchmark demonstration of macroscopic spatial
coherence—off-diagonal long range order (ODLRO) of a
macroscopic number of particles [1]—in Bose-Einstein
condensation (BEC) of cold atoms [2–4]. Recently, a
similar phase transition has been reported for the lower
branch of exciton-polaritons (LPs) in planar semiconductor
microcavities [5–12], and supporting theoretical frame-
works have been developed [13–20]. Interestingly, LPs
are free particles in a two-dimensional (2D) system where
genuine BEC exists only at zero temperature in the ther-
modynamic limit [21,22]. A quasi-BEC can be defined for
a 2D system of a finite size if a macroscopic number of
particles occupy a single ground state and if an ODLRO is
established throughout the system [23,24]. Yet in the LP
experiments to date, the system size is ambiguously de-
fined by the spot size of the pump laser, and there is no
quantitative study of the relation between the size and the
coherence length of a condensate [10,11]. In this work, we
perform Young’s double-slit experiment on a LP gas to
measure its spatial coherence properties across the phase
transition, and compare the measured coherence length
with the condensate size. We also measure the position-
momentum uncertainty product of the condensate and
compare it to the Heisenberg limit.

A sketch of the setup is shown in Fig. 1. The microcavity
sample is first magnified by a factor of 37.5 and imaged to a
plane A, which is in turn imaged by a lens II to a charge-
coupled device (CCD) at plane C for measurement of
spatial distribution. For the double-slit experiment, we
insert a pair of rectangular slits at plane A, and move the
lens II such that the image of plane A (denoted by plane B)
is a distance D behind plane C. Effectively, we observe on
the CCD the interference pattern of the LP emission pass-
ing through the double slit. In our experiment, D�6:7 cm,

the width of the slit image at plane B is ��53�m, and the
average wavelength of the LP emission is ��778:5 nm.
Correspondingly, the Fresnel number �2

D��0:05�1, thus
the far-field condition is satisfied at plane C. When mapped
onto the sample surface, the slit width seen by the LPs is
�r � 0:5 �m, which is less than the intrinsic coherence
length �0 � 1 �m of a single LP [25], and much less than
the LP system size of 5–10 �m. Hence neglecting the
variation in LP distribution within each slit, we obtain
the intensity distribution on the CCD camera [26]:
 

I�x� � I1�x�� I2�x�

�g�1��jr1� r2j�2
��������������������
I1�x�I2�x�

q
cos���x���12�;

Ii�x� � jE�ri�j
2sinc

�
x� x0	d=2

X

�
; ��x� �

2�x� x0�

Xc
;

X�
2D

ktot�
; Xc �

2D

ktotd
: (1)

Plane A Plane C

Plane B

Plane BPlane A Plane C

u1

u2

v1

v2

D

lens I lens II

lens IIlens I

sample

Double Slit

x

x

FIG. 1 (color). A sketch of the double-slit experiment setup.
Upper: the LP spatial distribution is imaged to a CCD at plane C.
Lower: a double-slit is inserted at plane A and imaged by lens II
to a virtual plane B. The CCD at plane C, a distance D from
plane B, captures the double-slit interference pattern.
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The subscript i � 1, 2 denotes the slit number. ri are the x
coordinates of the slits on plane B (Fig. 1), x is the x
coordinate on plane C, x0 is the center of the double slit
on plane C,E�ri� is the LP field amplitude at slit i, ktot is the
free space average wave number of the LP emission, and d
is the separation between the images of the two slits at
plane B. Ii is the intensity distribution if only slit i is open.
�12 is a fixed phase difference of LPs between the two slits.
��x� is a varying phase close to the path length difference
from the two slits, giving rise to a cosine modulation on the
far-field intensity distribution. After proper normalization,
the amplitude of the cosine modulation equals the first-
order coherence function g�1��r � jr1 � r2j�. Using six sets
of double-slit with varying slit separations r, we measured
g�1��r� from 1:3 �m, close to the intrinsic coherence length
of a single LP, up to 8 �m, close to the LP system size. By
varying the pumping intensity, we studied the character-
istics of g�1��r� across the phase transition.

The sample we investigated has a �=2 GaAs cavity
sandwiched between Ga0:865Al0:135As=AlAs distributed
Bragg reflectors. Three stacks of quantum wells (QWs)
are placed at the central three antinodes of the microcavity,
each stack consisting of four 6.8 nm-wide GaAs QWs
separated by 2.7 nm-wide AlAs barriers. We pump the
sample with linearly polarized picosecond mode-locked
Ti:sapphire laser. At an incidence angle of 50
 from the
sample growth direction, the laser is resonant with the

excitonlike LP modes. The sample is kept at Tlattice �
4 K. The cavity-photon energy at zero in-plane wave num-
ber is �7 meV above the bare QW exciton resonance,
corresponding to an optimal detuning for thermal-
equilibrium condensation of the LPs [12]. The threshold
pumping density is Pth � 300 W=cm2 [27].

A typical interference pattern observed at a pump rate
above the condensation threshold is shown in Fig. 2(a).
Distinct interference fringes are readily observed imposed
on a sinc function distribution. To obtain g�1��r�, we inte-
grate over a narrow strip along the y axis and fit it with
Eq. (1). g�1�, �12, jE1j, and jE2j are free fitting parameters,
while x0, d, X, and Xc are estimated from experimental
parameters with a 10% allowed variation. As shown in
Fig. 2(b), Eq. (1) fits the data very well for P> Pth. At P<
Pth, the interference patterns are barely observable or
nonexisting; one example is given in Fig. 2(c).

In Fig. 3(a) we show the increase of g�1��r� with P=Pth

for a few slit separations r. A salient feature in Fig. 3(a) is
that there is a jump in g�1��r� when the pump rate is
increased above a condensation threshold, even at r up to

FIG. 2 (color). (a) Raw image of the interference pattern, slit
separation r � 2:7 �m, P=Pth � 7. (b) Measured (symbols)
intensity I�x� for r � 2:7 �m, P=Pth � 6:7 and fitting by
Eq. (1). Fitted g�1��r� � 0:560	 0:006. (c) Same as (b), for r �
2:7 �m, P=Pth � 0:5, and g�1��r� � 0:09	 0:02.
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FIG. 3 (color). (a) g�1��r� vs P=Pth for different slit separations
r as labeled in the figure. (b) g�1��r� vs r for different pump rates
P=Pth as given in the legend. The symbols are measured g�1��r�.
The solid lines are fittings by Eq. (3). The dashed line at P=Pth �
7 is a fitting by Eq. (2). The dash-dotted line marks where
g�1��r� � 1=e. (c) rc, the 1=e decay length of g�1��r�, vs P=Pth

(circles) and �k vs P=Pth (triangles).
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the laser pump spot size of �8 �m. When the pump spot
size was increased to �20 �m, g�1��r�> 0:3 was also
observed up to r � 20 �m, limited again by the pump
spot size [28]. This demonstrates the sudden appearance
of macroscopic coherence above the condensation thresh-
old. Another feature is that, the increase of g�1��r� with
P=Pth is slower at larger r. This shows that the macro-
scopic coherence is built up gradually throughout the pump
beam spot size when the phase space density of LPs is
increased.

To study the spatial coherence properties quantitatively,
we plot in Fig. 3(b) how g�1��r� decays with r, and define a
coherence length rc as g�1��rc� � 1=e. The normalized
pump power dependence of rc is shown in Fig. 3(c). As a
reference, for a classical Maxwell-Boltzmann (MB) gas in
thermal equilibrium:

 g�1��r� � e��r
2=�2

T ; rc �
�T����
�
p �

�������������
2�@2

mkBT

s
: (2)

Here �T is the thermal de Broglie wavelength, m is the
mass of the particles, and T is temperature. For the current
system at T � 4 K, �T=

����
�
p
� 1:9 �m.

Below condensation threshold density, we measured a
rc <�T=

����
�
p

, since the system is far from thermal equi-
librium. In fact, the finite g�1��r� � 0:15 at r � 1:3 �m is
consistent with the intrinsic coherence length �0 � 1 �m

of a single LP due to its finite lifetime [25]: g�1�0 �r� �
exp�� r2

�2
0
� � 0:19. Above condensation threshold, we

found rc � �T=
����
�
p

. Fitting of the data with Eq. (2) with
temperature T as a free parameter also fails to describe the
data [dashed lines in Fig. 3(b)].

Since g�1��r� is the Fourier transform of the momentum
distribution f�k�, we resort to the actual momentum dis-
tribution of the system. It was found that above the con-
densation threshold, the LPs become highly degenerate in
the states with the lowest kinetic energies (e.g., Fig. 2 in
Ref. [12]). Their momentum distribution deviates from
the MB distribution, but follows well the Bose-Einstein
(BE) distribution with chemical potential j�j � kBT. In
this quantum degenerate limit, f�E�kBT�� �exp�E��kBT

��

1�1��e�1��1�f�0��kBT=�, most of the emission
comes from LPs with E� 0. Hence we can obtain the
following approximate form of g�1��r�:
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Here k is the LP’s in-plane wave number, g�k� is the
constant momentum density of state, F �2D��f�k�� and
H �f�k�� denote the 2D Fourier and Hankel transform of
f�k�, respectively. As shown in Fig. 3(b) (solid lines),
K0�x�, the modified Bessel function of the first kind, fits
very well the measured g�1��r� for P=Pth > 1.

If we extrapolate the e�� decay length of g�1��r� from
the fitting and compare it to �T at 4 K, it is 2:5�T at P �
1:2Pth, and 7:9�T at P � 6:7Pth.

In Fig. 3(c), we compare the pump rate dependence of rc
and �k, the 1=e width of the measured first-order coher-
ence function g�1��r� and the measured momentum distri-
bution function f�k�, respectively. At pump rates lower
than the condensation threshold, rc is �1 �m, limited by
the intrinsic coherence length �0 of a single LP, while �k is
�2 �m�1 due to the slow energy relaxation dynamics of
the LPs. The product rc�k is close to 2, the value expected
for a thermal MB distribution. When P increases toward
Pth, more injected LPs relax to the lower energy states and
�k gradually narrows, but rc is still limited by �0, hence a
decrease in rc�k. Once above the threshold, there is a
sudden increase of rc by more than fivefold up to
�6 �m, which manifests the spontaneous buildup of a
global phase among the LPs due to the phase coherent
stimulated scattering of LPs into the ground state.
Correspondingly, �k is reduced by about fourfold since
the LPs form a quantum degenerate Bose gas. Further
increasing the pump rates, rc decrease slightly while the
momentum distribution is broadened, potentially because
stronger LP-LP scattering at high densities introduces
condensate dephasing [19].

Finally, it is instructive to compare �k with the mea-
sured condensate size [9]. We have consistently observed
an abnormally slow increase of the condensate size in
comparison to the spot size of a photon laser based on
electron-hole pairs (Fig. 6C in Ref. [9]).

Because of the discrete jump in quantum efficiency at
the condensation threshold (Fig. 1 in Ref. [9]), the emission
in a condensate region is much brighter. Since the pump
beam has a Gaussian spatial profile, the center of the spot
reaches a threshold first, leading to a sharp decrease of the
emission spot size at Pth, for both a LP condensation and a
photon laser. At P> Pth, the emission spot size measures
the area which reaches the threshold. In a photon laser,
threshold density is determined by the local density of
electron-hole pairs independent of the system size. Hence
the 1=e spot size ! can be estimated as:

 !�P=Pth� � !p

��������������������������������������
1� log2

�
1�

Pth

P

�s
; (4)

where !p is the pump spot size. Equation (4) describes
very well the photon laser data (Fig. 6C in Ref. [9]), but
fails to explain the data of a LP condensate [Ref. [9] and
Fig. 4(a)]. Here we propose that for a LP condensate,
!�P=Pth� reflects the size of the condensate in which a
condensation threshold is satisfied. Then the critical LP
density nc�!� increases with the system size !, and the
pumping rate P=Pth needs to be modified as P

Pth

nc�!c�
nc�!�P=Pth�

,
where!c is the condensate size at P � Pth. As a simplified
model, consider nc for a 2D boson gas confined in a finite
size L � 2! [29]: nc�!� �

2
�2
T

ln�2!�T
�, then we obtain:
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Equation (5) fits the data very well [solid line in Fig. 4(a)],
with!p and!c as fitting parameters. This suggests that 2!
measures the size of the coherent condensate above
threshold.

With the distribution functions in both spatial and mo-
mentum domains, we can evaluate how well the system can
be described by a single-particle wave function. The stan-
dard deviation �k and �r are calculated from the momen-
tum and spatial distribution data f�k� and f�r� at P> Pth,
respectively; their product is compared to the Heisenberg
minimum uncertainty limit in Fig. 4(b). The sharp decrease
of�k�r at P� Pth indicates that a large number of the LPs
in the system condense into a single quantum state.
Deviation from the Heisenberg limit shows that there are
some thermal LPs coexisting with the coherent condensate.
The slight increase of�k�r at P=Pth > 1 may be caused by
condensate depletion due to LP-LP interactions at high
densities [19,30].

In conclusion, we studied the spatial coherence of a
microcavity polariton condensate. Young’s double-slit
setup is implemented to measure the first-order coherence
function g�1��r� of the LPs. The system acquires macro-
scopic coherence above a condensation threshold, mani-
fested as a sudden jump of g�1��r�. The observed g�1��r� vs r
is well described by the Fourier transform of a degenerate
Bose-Einstein distribution in the momentum space. The

coherent condensate expands from the central region of the
pump spot to the full pump spot size, and a slow growth of
the condensate size is well understood by a simple model
of quasi-BEC with a finite size. We also confirm the
position and momentum uncertainty product �k�r of the
LPs decreases toward the Heisenberg uncertainty limit
above a condensation threshold.
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FIG. 4 (color). (a) System size 2! vs pump rates P=Pth.
Symbols are the data. The solid line is a fitting by Eq. (5),
with !p � 13:3	 0:1 �m, !c � 6:1	 0:1 �m. The dotted
line is a fitting by Eq. (4) for comparison, with !p � 11:9	
0:2�m. (b) The position and momentum uncertainty product
�k�r vs P=Pth. The dash-dotted line indicates the minimum
uncertainty of �k�r � 1=2.
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