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Starting from a nonequilibrium configuration we analyze the role of the direct and the inverse binary
and triple interactions in reaching thermal equilibrium in a homogeneous isotropic pair plasma. We focus
on energies in the range 0.1-10 MeV. We numerically integrate the relativistic Boltzmann equation with
the exact QED collisional integrals taking into account all binary and triple interactions. We show that
first, when a detailed balance is reached for all binary interactions on a time scale t; < 1071 sec,
photons and electron-positron pairs establish kinetic equilibrium. Subsequently, when triple interactions
satisfy the detailed balance on a time scale 7.4 < 10712 sec, the plasma reaches thermal equilibrium. It is
shown that neglecting the inverse triple interactions prevents reaching thermal equilibrium. Our results
obtained in the theoretical physics domain also find application in astrophysics and cosmology.
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An electron-positron plasma is of interest in many fields
of physics and astrophysics: the early Universe [1],
gamma-ray bursts [2], active galactic nuclei [3], the center
of our galaxy [4], hypothetical quark stars [5], and ultra-
intense lasers [6].

A detailed study of the relevant processes and possible
equilibrium configurations in an optically thin pair plasma
is given in [7]. In all the above-mentioned applications the
precise knowledge of the optically thick plasma evolution
is required. In this case there exists only a qualitative
description, and an assumption of thermal equilibrium is
often adopted without explicit proof [2].

In this Letter we consider a uniform isotropic electron-
positron-photon plasma in the absence of external electro-
magnetic fields and we describe its evolution starting from
arbitrary nonequilibrium initial conditions up to reaching
thermal equilibrium. We are interested in the range of final
temperatures in thermal equilibrium, bracketing the elec-
tron rest mass energy

0.1 =Ty < 10 MeV. (1)

These boundaries are required for the study of electron-
positron pairs in the absence of the production of other
particles such as muons. We assume that the energy density
of the plasma is constant and is, correspondingly, in the
range 1.6 X 10%2 < p < 3.8 X 10’ erg/cm?. The relative
number densities at thermal equilibrium will be 3.1 X
108 < nyg <7.9 X 10%* cm™3.

We adopt a kinetic description for the distribution func-
tions of electrons, positrons, and photons. In our case the
plasma parameter is small, g = (nr3) ! << 1, where rj, is
the Debye length, and therefore we use one-particle distri-
bution functions. Additionally, in our case electrons and
positrons are nondegenerate. We solve numerically the
relativistic Boltzmann equations [8] which for homogene-
ous and isotropic distribution functions of electrons, posi-
trons, and photons reduce to
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where f;(e, 1) are their distribution functions, the index i
denotes the type of particle, ¢ is their energy, and 5 and
x/! are the emission and the absorption coefficients for the
production of a particle of type *“i”’ via the physical process
labeled by g.

In order to solve Eq. (2) we use a finite difference
method by introducing a computational grid in the phase
space to represent the distribution functions and to com-
pute collisional integrals [9]. The result of this procedure is
the stiff system of ordinary differential equations to be
solved with the implicit Gear method [10]. For binary
interactions we use exact QED matrix elements [11]. For
triple interactions we compute emission and absorption
coefficients following Svensson [12]. The Compton scat-
tering of photons, for instance, is described by [9]

ny = f dk'dpdp'wypxpf, (K, Df (P 1), (3)
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is the corresponding transition probability, k = (e, /c, k)
and p = (€,/c, p) are four-momenta of photon and posi-
tron (electron), primes denote particles after the interac-
tion, and My; is the matrix element for the considered
process.

For such a dense plasma collisional integrals in (2)
should include not only binary interactions, having order
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a in Feynmann diagrams, where « is the fine structure
constant, but also triple ones, having order o [11]. We
consider all possible binary and triple interactions between
electrons, positrons, and photons as summarized in Table 1.

Each of the above reactions is characterized by the
corresponding time scale and optical depth. For Compton
scattering, for instance, we have

1

tcs = ’ Tes = O-TniROr (6)
grn.C

where o is the Thomson cross section and n. is the
number density of pairs. There are two time scales in our
problem that characterize the condition of detailed balance
between direct and inverse reactions, ~., for binary and
a~ 't for triple interactions, respectively. In the first phase
of the system evolution the binary interactions are found to
have a predominant role. Starting from arbitrary distribu-
tion functions we find a common development: at the time
t., the distribution functions always have evolved in a
functional form on the entire energy range, depending
only on two parameters. We find in fact for the distribution
functions the expressions

file) = exp(— %} (N
i

with chemical potential ¢; = w;/m,c? and temperature
0; = kzT;/m,c?, where £ = €/m,c? is the energy of the
particle, m, is the electron mass, and kg is Boltzmann’s
constant. Such a configuration corresponds to a kinetic
equilibrium [13,14] in which electrons, positrons, and
photons acquire a common temperature and nonzero
chemical potential. At the same time we found that triple
interactions become essential for ¢ > ¢, after the estab-
lishment of kinetic equilibrium. Such triple interactions,
both direct and inverse, are indeed essential in achieving
the thermal equilibrium.

In (7) analogously to the temperature, defining the av-
erage kinetic energy in the system, the chemical potential
represents deviation from the thermal equilibrium through
the relation ¢ = 6 In(n/n,), where n, are concentrations

TABLE I. Microphysical processes in the pair plasma.

Binary interactions Radiative variants
Mgller, Bhabha
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etei — ei/eil

Bremsstrahlung
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Single Compton
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Double Compton
Ry SN
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Radiative pair production
and three photon annihilation
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Pair production
and annihilation
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of particles in thermal equilibrium. We do not absorb the
chemical potentials into the normalization factors since
they depend on time and describe the approach to thermal
equilibrium.

The results of numerical simulations are reported below.
We choose two limiting initial conditions with flat spectra:
(i) electron-positron pairs with a 107> energy fraction of
photons and (ii) the reverse case, i.e., photons with a 1073
energy fraction of pairs. Our grid consists of 60 energy
intervals and 16 X 32 intervals for two angles characteriz-
ing the direction of the particle momenta. In both cases the
total energy density is p = 10?4 erg/cm?. In the first case
initial concentration of pairs is 3.1 X 10** cm™3, in the
second case the concentration of photons is 7.2 X
10%° cm ™3,

In Fig. 1 we show concentrations of photons and pairs as
well as their sum for both our initial conditions. After
calculations begin, concentrations and energy density of
photons (pairs) increase rapidly with time, due to annihi-
lation (creation) of pairs by the reaction yy’ < e“e™.
Then, in the kinetic equilibrium phase, concentrations of
each component stay almost constant, and the sum of
concentrations of photons and pairs remains unchanged.
Finally, both individual components and their sum reach
stationary values. If one compares and contrasts both cases
as reproduced in Fig. 1 one can see that, although the initial
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FIG. 1 (color). Dependence on time of concentrations of pairs
(black), photons (red), and both (thick line) when all interactions
take place (solid line). Upper (lower) figure corresponds to the
case when initially there are mainly pairs (photons). Dotted
curves on the upper figure show concentrations when inverse
triple interactions are neglected. In this case an enhancement of
the pairs occurs with the corresponding increase in photon
number and thermal equilibrium is never reached.
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conditions are drastically different, in both cases the same
asymptotic values of the concentration are reached.

We now describe in detail the case when initially pairs
dominate. One can see in Fig. 2 that the spectral density of
photons and pairs [9]

4
o = ey ®

where B+ =+/1 — (m,c*/¢)* for pairs and B, = 1 for
photons, E is the energy density, can be fitted already at
t, = 20t =7 X 107> sec by distribution functions (7)
with definite values of temperature 6,(z,) = 1.2 and
chemical potential ¢,(z;) = —4.5, common for pairs and
photons. As expected, after 7, the distribution functions
preserve their form (7) with the values of temperature and
chemical potential changing in time, as shown in Fig. 3. As
one can see from Fig. 3, the chemical potential evolves
with time and reaches zero at the moment #;, = a~ 't; ~
710713 sec, corresponding to the final stationary solution.

We now discuss the results. Let us consider the distri-
bution functions (7) with different temperatures 6; and
chemical potentials ¢; for pairs and photons. The require-
ment of vanishing reaction rate for the Compton scattering
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FIG. 2 (color). Spectra of pairs (upper figure) and photons
(lower figure) when initially only pairs are present. The black
curve represents the results of numerical calculations obtained
successively at t =0, t = t;, and t =t (see the text). Both
spectra of photons and pairs are initially taken to be flat. The
yellow curves indicate the spectra obtained from (7) at t = ¢,.
The perfect fit of the two curves is most evident in the entire
energy range leading to the first determination of the temperature
and chemical potential both for pairs and photons. The orange
curves indicate the final spectra as thermal equilibrium is
reached.

f+f, = fif) leads to the equal temperature of pairs and
photons 8. = 07 = 6;; see also [13,14]. In this way the
detailed balance between any direct and the corresponding
inverse reactions shown in Table I leads to relations be-
tween 6 and ¢ collected in Table II.

These relations are not imposed, but are verified through
the numerical calculations. This is a powerful tool to verify
the consistency of our approach and numerical calcula-
tions. These relations were obtained for the first time, to
our knowledge, in [14] and then later in [13] for binary
reactions.

From Table II one can see that the necessary condition
for thermal equilibrium in the pair plasma is detailed
balance between direct and inverse triple interactions.
This point is usually neglected in the literature where there
are claims that the thermal equilibrium may be established
with only binary interactions [15]. In order to demonstrate
it explicitly we also show in Fig. 1 the dependence of
concentrations of pairs and photons when inverse triple
interactions are artificially switched off. In this case (see
dotted curves in the upper part of Fig. 1), after kinetic
equilibrium is reached concentrations of pairs decrease
monotonically with time, and thermal equilibrium is never
reached.

The existence of a non-null chemical potential for pho-
tons indicates the departure of the distribution function
from the one corresponding to thermal equilibrium.
Negative (positive) value of the chemical potential gener-
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FIG. 3 (color). Time dependence of temperatures, measured
on the left axis (solid line), and chemical potentials, measured on
the right axis (dotted line), of electrons (black) and photons
(red). The dashed lines correspond to the reaching of the kinetic
(~107'* sec) and the thermal (~10~'? sec) equilibria. Upper
(lower) figure corresponds to the case when initially there are
mainly pairs (photons).
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TABLE II. Relations between parameters of equilibrium DFs
fulfilling detailed balance conditions for each of the reactions
shown in Table I.

Interaction Parameters of distribution functions

Compton scattering
Pair production
Tripe interactions

0)/ = Hia V§0y, P+
Py = P, if 0'}/ =0+
gD'y’ P+ = O’ if 01/ = 0i

ates an increase (decrease) of the number of particles in
order to approach the one corresponding to the thermal
equilibrium state. Then, since the total number of particles
increases (decreases), the energy is shared between more
(less) particles and the temperature decreases (increases);
see Fig. 3. Clearly, as thermal equilibrium is approached,
the chemical potential of photons is zero.

In our example with the energy density 10** erg/cm? the
thermal equilibrium is reached at ~7 X 10~13 sec with the
final temperature Ty, = 0.26 MeV. For a larger energy
density the duration of the kinetic equilibrium phase, as
well as of the thermalization time scale, is smaller. In our
entire temperature range (1) we deal with a nondegenerate
plasma.

Our results, obtained for the case of a uniform plasma,
can only be adopted for a description of a physical system
with dimensions R, > 1/no; = 4.3 X 107> cm.

The assumption of the constancy of the energy density is
only valid if the dynamical time scale t4y, = [(1/R) X
(dR/dt)]"! of the plasma is much larger than the above
time scale fy3, which is indeed true in all the cases of
astrophysical interest.

Since we get thermal equilibrium already on the time
scale ty, = 107'? sec, and such a state is independent of
the initial distribution functions for electrons, positrons,
and photons, the sufficient condition to obtain an isother-
mal distribution on a causally disconnected spatial scale
R > cty, = 1072 cm is the request of constancy of the
energy density on such a scale as well as, of course, the
invariance of the physical laws.

We have considered the evolution of an initially non-
equilibrium optically thick electron-positron-photon
plasma up to reaching thermal equilibrium. Starting from
arbitrary initial conditions we obtain kinetic equilibrium
from first principles, directly solving the relativistic
Boltzmann equation with collisional integrals computed
from QED matrix elements. We have demonstrated the
essential role of direct and inverse triple interactions in

reaching thermal equilibrium. Our results can be applied in
the theories of the early Universe and of gamma-ray bursts,
where thermal equilibrium is postulated at the very early
stages. These results can in principle be tested in laboratory
experiments in the generation of electron-positron pairs.

We thank the anonymous referee for comments which
have improved the comprehension of our results.
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