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Nonlinear fluid simulations are developed by us to investigate the properties of fully developed two-
dimensional (2D) electron fluid turbulence in a very dense Fermi (quantum) plasma. We find that a 2D
quantum electron plasma exhibits dual cascades, in which the electron number density cascades towards
smaller turbulent scales, while the electrostatic potential forms larger scale eddies. The characteristic
turbulent spectrum associated with the nonlinear electron plasma oscillations (EPO) is determined
critically by a ratio of the energy density of the EPOs and the electron kinetic energy density of quantum
plasmas. The turbulent transport corresponding to the large-scale potential distribution is predominant in
comparison with the small-scale electron number density variation, a result that is consistent with the

classical diffusion theory.
DOI: 10.1103/PhysRevLett.99.125002

About 45 years ago, Pines [1] had laid down the foun-
dation for quantum plasma physics. During the last decade,
there has been a growing interest in investigating new
aspects of dense quantum plasmas by developing the quan-
tum hydrodynamic (QHD) equations [2] by incorporating
the quantum force associated with the Bohm potential [2],
by deriving the Child-Langmuir law in the quantum regime
[3], and by studying numerous collective effects [4—7]
involving different quantum forces (e.g., due to the
Bohm potential [2] and the pressure law [4,5] for the
Fermi plasma, as well as the potential energy of the
electron-1/2 spin magnetic moment in a magnetic field
[8]). Studies of collective interactions in dense quantum
plasmas are relevant for the next generation intense laser-
solid density plasma experiments [9,10], for superdense
astrophysical bodies [11,12] (e.g., the interior of white
dwarfs and neutron stars), as well as for micro- and nano-
scale objects (e.g., quantum diodes [3], quantum dots and
nanowires [13], and nanophotonics [14]).

The Wigner-Poisson (WP) model [15] has been used to
derive a set of QHD equations [4,5] for a dense electron
plasma. The QHD equations include the continuity, mo-
mentum and Poisson equations. The quantum nature [4]
appears in the electron momentum equation through the
pressure term, which requires the knowledge of the Wigner
distribution for a quantum mixture of electron wave
functions, each characterized by an occupation probabil-
ity. The quantum part of the electron pressure is repre-
sented as a quantum force [2,4] —V¢p, where ¢p =
—(h*/2m,/n,)V? Jn,, h is the Planck constant divided
by 2, m, is the electron mass, and n, is the electron

number density. Defining the effective wave function ¢ =

Jn(xr, r)exp[iS(r, )/h], where VS(r, 1) = m,u,(r, t) and
u,(r, 1) is the electron velocity, the electron momentum
equation can be represented as an effective nonlinear
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Schrodinger (NLS) equation [4,5,7], in which there ap-
pears a coupling between the wave function and the elec-
trostatic potential associated with the electron plasma
oscillations (EPOs). The electrostatic potential is deter-
mined from the Poisson equation. We thus have the
coupled NLS and Poisson equations, which govern the
dynamics of nonlinearly interacting EPOs in a dense quan-
tum plasmas. This mean-field model of Refs. [4,5] is valid
to the lowest order in the correlation parameter, and it
neglects correlations between electrons. The density func-
tional theory [16] incorporates electron-electron correla-
tions, which are neglected in the present Letter.

In this Letter, we use the coupled NLS and Poisson
equations for investigating, by means of computer simula-
tions, the properties of 2D electron fluid turbulence and
associated electron transport in quantum plasmas. We find
that the nonlinear coupling between the EPOs of different
scale sizes gives rise to small-scale electron density struc-
tures, while the electrostatic potential cascades towards
large-scales. The total energy associated with our quantum
electron plasma turbulence, nonetheless, possesses a char-
acteristic spectrum, which is a non-Kolmogorov-like. The
electron diffusion caused by the electron fluid turbulence is
consistent with the dynamical evolution of turbulent mode
structures.

For our 2D turbulence studies, we use the nonlinear
Schrédinger-Poisson equations [4,7]

ix/2H% FHVAY 4+ oW — WPV =0, (1)
and

Ve =|V]> -1, 2

which are valid at zero electron temperature for the Fermi-
Dirac equilibrium distribution, and which govern the dy-
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namics of nonlinearly interacting EPOs of different wave-
lengths. In Egs. (1) and (2) the wave function V¥ is nor-
malized by /ng, the electrostatic potential ¢ by kyTr/e,
the time ¢ by the electron plasma period wgel, and the space
r by the Fermi Debye radius Ap. We have introduced the
notations Ap = (kzTr/4mnge?)'/? = Vi/wy and VH =
hwpe/ \2kgTr, where kjp is the Boltzmann constant and
the Fermi electron temperature kzTp = (h*/2m,) X
(3m2)Y 3né/ 3 e is magnitude of the electron charge, and
wpe = (47n9e?/m,)"/? is the electron plasma frequency.
The origin of the various terms in Eq. (1) is obvious. The
first term is due to the electron inertia, the A-term in (1) is
associated with the quantum tunneling involving the Bohm
potential, ¢ ¥ comes from the nonlinear coupling between
the scalar potential (due to the space charge electric field)
and the electron wave function, and the cubic nonlinear
term is the contribution of the electron pressure [4] for the
Fermi plasma that has a quantum statistical equation of
state. We are using the CGS units throughout this Letter.

Equations (1) and (2) admit a set of conservation laws
[8], including the number of electrons N = [ W2dxdy, the
electron momentum P = —i [ W*VWdxdy, the electron
angular momentum L = —j f P*r X VWdxdy, and the to-
tal energy £= [[—~W'HV?W +|Vol|?/2+|V|?/2]dxdy.
In obtaining the total energy £, we have used the relation
0E/ot = iH(YVV* — ¥*VW), where the electric field
E = —V. The conservations laws are used to maintain
the accuracy of the numerical integration of Egs. (1) and
(2), which hold for quantum electron-ion plasmas with
fixed ion background. The assumption of immobile ions
is valid, since the EPOs (given by the dispersion relation
[4,5] w* = wp, + k*VE + h*k*/4m?2) occur on the elec-
tron plasma period, which is much shorter than the ion
plasma period w;il . Here w and k are the frequency and the
wave number, respectively. The ion dynamics, which may
become important in the nonlinear phase on a longer time
scale (say of the order of a)p’i]), in our investigation can
easily be incorporated by replacing 1 in Eq. (2) by n,,
where the normalized (by n,) ion density n; is determined
from d,n; + n;V-u;=0 and d,u; = —C?V¢, where d, =
(8/01) + u; - V, u; is the ion velocity, C; = (kzTr/m;)'/?
is the ion sound speed, and m; is the ion mass.

The nonlinear mode coupling interaction studies are
performed to investigate the multiscale evolution of a
decaying 2D electron fluid turbulence, which is described
by Egs. (1) and (2). All the fluctuations are initialized
isotropically (no mean fields are assumed) with random
phases and amplitudes in Fourier space, and evolved fur-
ther by the integration of Egs. (1) and (2), using a fully de-
aliased pseudospectral numerical scheme [17] based on the
Fourier spectral methods. The spatial discretization in our
2D simulations uses a discrete Fourier representation of
turbulent fluctuations. The numerical algorithm employed
here conserves energy in terms of the dynamical fluid

variables and not due to a separate energy equation written
in a conservative form. The evolution variables use peri-
odic boundary conditions. The initial isotropic turbulent
spectrum was chosen close to k=2, with random phases in
all directions. The choice of such (or even a flatter than —2)
spectrum treats the turbulent fluctuations on an equal foot-
ing and avoids any influence on the dynamical evolution
that may be due to the initial spectral nonsymmetry. The
equations are advanced in time using a 4th order Runge-
Kutta (RK4) scheme. The code is made stable by a proper
de-aliasing of spurious Fourier modes, and by choosing a
relatively small time step in the simulations. Our code is
massively parallelized using message passing interface
libraries to facilitate higher resolution in a 2D computa-
tional box, with a resolution of 5127 grid points.

We study the properties of 2D fluid turbulence, com-
posed of nonlinearly interacting EPOs, for two specific
physical systems. These are the dense plasmas in the
next generation laser-based plasma compression (LBPC)
schemes [10] as well as in superdense astrophysical objects
[11,12] (e.g., white dwarfs). It is expected that in LBPC
schemes, the electron number density may reach
10 cm™? and beyond. Hence, we have @, =1.76 X
108571 kpTr=17Xx10"7erg, how, = 1.7 X 1077 erg,
and H = 1. The Fermi Debye length A, = 0.1 A°. On
the other hand, in the interior of white dwarfs, we typically
have [18] ny ~ 103° cm™3 (such values are also common
in dense neutron stars and supernovae), yielding @, =
5.64 X 10" s7! kpTp = 1.7 X 1077 erg, hwp, = 5.64 X
1078 erg, H =~ 0.03, and Ap = 0.025 A°. The numerical
solutions of Egs. (1) and (2) for H =1 and H = 0.025
(corresponding to n, = 10?7 cm™3 and ny = 10° cm ™3,
respectively) are displayed in Fig. 1, which are the electron
number density and electrostatic (ES) potential distribu-
tions in the (x, y) plane.

Figure 1 reveals that the electron density distribution has
a tendency to generate smaller length-scale structures,
while the ES potential cascades towards larger scales.
The coexistence of the small and larger scale structures
in turbulence is a ubiquitous feature of various 2D turbu-
lence systems. For example, in 2D hydrodynamic turbu-
lence, the incompressible fluid admits two invariants,
namely, the energy and the mean squared vorticity. The
two invariants, under the action of an external forcing,
cascade simultaneously in turbulence, thereby leading to
a dual cascade phenomena. In these processes, the energy
cascades towards longer length scales, while the fluid
vorticity transfers spectral power towards shorter length
scales. Usually, a dual cascade is observed in a driven
turbulence simulation, in which certain modes are excited
externally through random turbulent forces in spectral
space. The randomly excited Fourier modes transfer the
spectral energy by conserving the constants of motion in k
space. On the other hand, in freely decaying turbulence, the
energy contained in the large-scale eddies is transferred to
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FIG. 1 (color online). Small scale fluctuations in the electron
density resulted from our steady turbulence simulations of 2D
electron Fermi plasma. Forward cascades are responsible for the
generation of small-scale fluctuations. Large scale structures are
present in the electrostatic potential, essentially resulting from
an inverse cascade.

the smaller scales, leading to a statistically stationary
inertial regime associated with the forward cascades of
one of the invariants. Decaying turbulence often leads to
the formation of coherent structures as turbulence relaxes,
thus making the nonlinear interactions rather inefficient
when they are saturated. The power spectrum exhibits an
interesting feature in our 2D electron plasma system, un-
like the 2D hydrodynamic turbulence [19,20]. The spectral
slope in the 2D quantum electron fluid turbulence is close
to the Iroshnikov-Kraichnan (IK) power law [21,22] k=3/2,
rather than the usual Kolomogrov power law [19] k~5/3.
We further find that this scaling is not universal and is
determined critically by the quantum tunneling parameter
H. For instance, for a higher value of H = 1.0 the spectrum
becomes more flat (see Fig. 2). Furthermore, for H = 0.65
one encounters a turbulence spectrum that decays as k!
(not shown in the Fig. 2). Physically, the flatness (or
deviation from the k~>/3), is likely to result from the short
wavelength part of the EPOs spectrum which is controlled
by the quantum tunneling effect H associated with the
Bohm potential. The peak in the energy spectrum can be
attributed to the higher turbulent power residing in the EPO
potential, which eventually leads to the generation of larger
scale structures, as the total energy encompasses both the
electrostatic potential and electron density components. In
our dual cascade process, there is a delicate competition

between the EPO dispersions caused by the statistical
pressure law (giving the k*V2 term, which dominates at
longer scales) and the quantum Bohm potential (giving the
h?k*/4m?2 term, which dominates at shorter scales with
respect to a source). Furthermore, it is interesting to note
that exponents other than k~5/3 have also been observed in
numerical simulations [23] of the Charney and 2D incom-
pressible Navier-Stokes equations.

We finally estimate the electron diffusion coefficient in
the presence of small and large-scale turbulent EPOs in 2D
quantum plasma. An effective electron diffusion coeffi-
cient caused by the momentum transfer can be calculated
from Dy = [((P(r, 1) - P(r,  + ¢))dt’, where P is the
electron momentum and the angular brackets denotes spa-
tial averages and the ensemble averages are normalized to
unit mass. Since the 2D structures are confined to an x-y
plane, the effective electron diffusion coefficient, D,
essentially relates the diffusion processes associated with
random translational motions of the electrons in nonlinear
plasmonic fields. We compute D in our simulations, to
measure the turbulent electron transport that is associated
with the turbulent structures we have reported herein. It is
observed that the effective electron diffusion is lower when
the field perturbations are Gaussian. On the other hand, the
electron diffusion increases rapidly with the eventual for-
mation of longer length-scale structures, as shown in Fig. 3.
The electron diffusion due to large-scale potential distri-
butions in quantum plasmas dominates substantially, as

10°
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FIG. 2 (color online). Small-scale fluctuations in the electron
density coexisting with the large scale electrostatic potential
structures lead to an inertial range power spectrum which is
determined critically by H (ratio of the energy density of the
EPOs and the electron kinetic energy density of quantum plas-
mas). The 2D electron fluid turbulence interestingly relaxes
towards an IK type k—3/2 spectrum in a dense Fermi plasma
for H = 0.025.
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10° amplitude EPOs are nonlinearly interacting in a complex
fashion.
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FIG. 3 (color online). Time evolution of an effective electron

diffusion coefficient corresponds to the diffusion associated with

the large-scale electrostatic potential and the small-scale electron

density. Here a comparison between H = 1 and H = 0.025 is

shown.

depicted in Fig. 3. Furthermore, in the steady state, non-
linearly coupled EPOs form stationary structures, and D
saturates eventually. Thus, remarkably an enhanced elec-
tron diffusion results primarily due to the emergence of
large-scale potential structures in our 2D quantum plasma.

In summary, we have presented computer simulation
studies of the 2D fluid turbulence in a dense quantum
plasma. Our simulations, for the parameters that are rep-
resentative of the next generation intense laser-solid den-
sity plasma experiments as well as of the superdense
astrophysical bodies, reveal new features of the dual cas-
cade in a fully developed 2D electron fluid turbulence.
Specifically, we find that the power spectrum associated
with nonlinearly interacting EPOs in quantum plasmas
follow a non-Kolmogorov-like IK spectrum for H =
0.025. However, for higher values of H there appears a
deviation from the IK spectrum. It turns out that the scaling
exponent is sensitive to the variation of H, which repre-
sents the ratio between the energy density of EPOs and the
electron kinetic energy density in dense quantum plasmas.
In conclusion, we have identified new fluid turbulence
aspects of very dense 2D quantum plasmas in which finite
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