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We investigate the acoustic normal modes (‘‘phonons’’) of a 1D microfluidic droplet crystal at the
crossover between 2D flow and confined 1D plug flow. The unusual phonon spectra of the crystal, which
arise from long-range hydrodynamic interactions, change anomalously under confinement. The bounda-
ries induce weakening and screening of the interactions, but when approaching the 1D limit we measure a
marked increase in the crystal sound velocity, a sign of interaction strengthening. This nonmonotonous
behavior of the phonon spectra is explained theoretically by the interplay of screening and plug flow.
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Microfluidic two-phase flow offers experimental tools to
investigate dissipative nonequilibrium dynamics [1–12].
Microfluidic crystals—ordered arrays of water-in-oil
droplets driven by flow—are governed by long-range di-
polar interactions and exhibit acoustic normal modes, akin
to solid-state phonons [11,12]. These interactions share
common themes with other systems driven by a
symmetry-breaking field, such as dusty-plasma crystals
[13,14], vortices in superconductors [15,16], active mem-
branes [17], and nucleoprotein filaments [18,19]. Thus,
microfluidic crystals offer a vista, in the linear flow regime,
into many-body physics far from equilibrium. Long-range
forces, such as the hydrodynamic dipolar force, are known
to be radically affected by boundaries and dimensionality.
This has been recently shown for two disordered systems:
Brownian particles confined to 1D and 2D [20–22] and
sedimenting particles [23,24].

In this Letter we examine the direct influence of bounda-
ries on the normal modes of an ordered many-body system
at low Reynolds number (Re� 5� 10�4). We investigated
1D microfluidic droplet crystals under different degrees of
confinement ranging from unconfined 2D flow to 1D flow,
where the channel is nearly blocked by droplets (plug
flow). The interdroplet forces that fall off as r�2 in 2D
cross over under confinement to decay as exp��2�r=W�
[20,25,26], where the screening length W is the width of
the channel. However, close to plug flow, and despite the
weakening of interactions due to screening, the magnitude
of interdroplet forces increases as tan�R=W�� due to the
crystal’s incompressibility, R being the droplet radius. This
interplay between hydrodynamic screening and incom-
pressibility is reflected in a nonmonotonous behavior of
the phonon spectra. Confinement breaks the translational
invariance, which is manifested in the breaking of the x-y
antisymmetry of unconfined spectra. Additionally, the ap-
proach to incompressibility in the 1D limit implies a
divergence of sound velocity and, indeed, we observed
its marked increase.

Experimental setup.—The microfluidic device (Fig. 1)
was fabricated using standard soft lithography and made of
poly-dimethyl-siloxane (PDMS) [1,11]. Water droplets
formed at a T junction between water and oil channels
under continuous flow, emanating with uniform radii R and
fixed interdroplet distance a. Channel height h was 10 �m
and droplets had a disklike shape, squeezed between the
channel floor and ceiling, thereby flowing in 2D. We con-
fined the crystal transversally by narrowing the channel
width, varying the confinement parameter, � � 2R=W,
from 0.1 (W � 250 �m, practically unconfined) to 0.9
(W � 50 �m). Using a manually controlled motorized
microscope stage we followed subcrystals of�40 droplets
for �30 s on average. Power spectra (Fig. 2) were mea-
sured by extracting the droplet trajectories and performing
Fourier transforms in space and time. The peaks of the
power spectrum define the dispersion relation !�k� [11].

Phonon spectra.—The measured power spectra for dif-
ferent values of the confinement parameter � are shown in
Fig. 2. The dispersion relations show acoustic phonons in
the crystal. The unconfined crystal [Figs. 2(a) and 2(b)]
exhibits a sinelike curve that spans the Brillouin zone with
a sound velocity Cs � @!=@k � 165 �m s�1 [11]. At the
edge of the Brillouin zone k � �=a, waves travel in the

FIG. 1. Droplets of water in oil [mineral oil, viscosity
30 mPa s, with 2% span-80 surfactant (w=w)] were formed at
a T junction under constant pressure. Channel height was
10 �m. (a) Droplet formation in confinement of � � 0:62.
(b) Longitudinal waves (along x) in � � 0:58. (c) Transversal
waves (along y) in � � 0:46. Scale bars are 100 �m.
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opposite direction upon a sign crossover of the group
velocity that corresponds to standing waves. The longitu-
dinal and transversal modes are antisymmetric; namely,
!x�k� � �!y�k�. The straight line !�k� � �udk results
from stationary defects along the channel that deflect the
droplets and induce waves that move backwards at �ud in
the crystal frame of reference. Under confinement, the
general shape of the sinelike curve remained. However,

the longitudinal-transversal antisymmetry was broken:
j!x�k�j< j!y�k�j for all k < �=a. This is evident in
Fig. 2(h), showing the sound velocities Cs;x and Cs;y,
normalized by the theoretically computed unconfined
Cs�� � 0� [11]. For the longitudinal phonons, Cs;x de-
creased as � increased. Above �� 0:6 the sinelike curve
fell below our detection limit (data not shown). Oppositely,
for the transversal phonons Cs;y increased with �.
However, the amplitude of phonons decreased exponen-
tially with � [Fig. 2(i)], essentially undetectable above ��
0:65. Notably, with the largest � for which we got measur-
able dispersion [� � 0:63, Fig. 2(g)], Cs;y (700 �m s�1)
was larger than the flow velocity of the crystal itself ud
(490 �m s�1); namely, the flow became ‘‘subsonic.’’ This
velocity crossover was not observed at smaller �. To con-
clude, under confinement we observed that Cs decreased in
the longitudinal modes but increased in the transversal
ones. Additionally, the amplitude of vibrations of both
modes decreased significantly.

Hydrodynamic potential.—We present a hydrodynamic
model to account for the effects of confinement. The disk-
like droplet flows slower than the surrounding oil (due to
friction with the channel floor and ceiling), and hence
perturbs the flow of oil, which mediates a drag force on
the other droplets. The flow far from the droplet can be
decomposed into a Poiseuille-like parabolic profile along
the z axis (channel height h) and a 2D potential flow in the
xy plane, such that the potential satisfies the Laplace
equation, demanding zero mass flux through the edge of
the droplet and the channel sidewalls. The first boundary
condition stems from the treadmill flow inside the droplet
[3], which implies a nonzero oil velocity parallel to the
droplet surface. The solution for an unconfined droplet is a
2D dipole R2�u1oil � ud�rx̂=r

2, where u1oil is the oil velocity
far from the droplet [11,21,27,28]. As in electrostatics, to
achieve zero mass flux through the walls we introduce an
array of image dipoles perpendicular to the flow (Fig. 3).
Thus, the flow is similar to the flow through a row of pillars
[29]. When the droplet is in the middle of the channel at
�x; y� � �0; 0� [Fig. 3(a)], the solution is a sum over 2D
dipoles positioned on an infinite lattice with a constant W.
Longitudinal modes do not change the formation of the
image lattice that each droplet induces. If, however, the
droplet deviates transversally from the middle �x; y� �
�0; �� [Fig. 3(b)], the array splits into two interlaced arrays
of lattice constant 2W, one displaced by �� and the other
by ��. Alternatively, the image array may be considered

FIG. 2 (color). (a)–(g) Transversal (left column) and longitu-
dinal (right column) phonon power spectra for increasing values
of the confinement parameter � (shown on each plot). Color
code represents the logarithm of the amplitude. White curves
show our theory for !�k�. Black curves indicate the correspond-
ing theoretical !�k� for unconfined crystals. Dashed line is
!�k� � �udk. Experimental parameters are shown in Table I.
(h) Cs���=Cs�� � 0� for both polarizations. Cs�� � 0� was
calculated from theory for an unconfined crystal with the same
flow parameters as the confined one. (i) Mean amplitude of the
transversal modes as a function of �.

TABLE I. Experimental parameters for Figs. 2(a)–2(g).

� W (�m) uoil (�m s�1) ud (�m s�1) Cs;y (�m s�1)

0.09 250 1625 314 165
0.24 150 1490 308 280
0.41 100 1310 460 255
0.63 70 1500 490 700
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as a single lattice of constant 2W with two droplets per unit
cell spaced by W � 2�. This difference is the source of the
x-y antisymmetry breaking.

The infinite image array explains why the long-range
dipole field is screened under confinement. Far from the
droplet, the array of image dipoles can be thought of as a
parallel-plate capacitor. Of course, the electrostatic field
outside this capacitor vanishes. However, close to the capa-
citor the discreteness of the charge is significant and the
field leaks out and decays exponentially as exp��2�r=W�
[20,30].

To calculate the single-droplet flow potential one sums
the contributions of the droplet and its images. It is conve-
nient to use the complex potential w�z���d�z�� i d�z�,
where �d is the flow potential and  d is the stream func-
tion. The total potential is the sum over the interlaced
arrays:

 

wd�z��R�u1oil�ud�
�
coth

�
�

2W
�z� i��

�

�coth
�
�

2W
�z� i�W����

��

�

�
cot���=4��

sin���=2�

cos���=2��sin�2��=W�

�
�1
:

(1)

The velocity of oil induced by the droplet is r�d, and
the drag force that the jth droplet exerts on the ith droplet is
directed along r�d and is given by �dr�d�ri � rj�, with a
drag coefficient �d � 8�R2�=h (� is oil viscosity). From
Eq. (1) we deduce the asymptotic spatial dependence of the
force and the effect of confinement:

 @x���u
1
oil�ud�

�
� tan���=2�exp��2�x=W� x	W
R2=x2 x
W

:

(2)

The behavior in the y direction is similar but the decay
length scale is doubled, W=�, since the image lattice has a
double lattice constant (Fig. 3). Thus, there are two com-
peting effects, the exponential spatial decay and the diver-
gence of the amplitude, tan���=2�, due to confinement.
When �� �1� h=R� the exact nature of the divergence
may be affected by the boundaries since the flow is no
longer a 2D potential flow.

The droplets are subject to a friction force applied by the
channel floor and ceiling Ff � �ud, with � the friction
coefficient. The potential of the crystal is approximately a
superposition of the single-droplet potentials along with
the uniform flow of oil:��r� � u1oilrx̂�

P
j��r� rj�. The

equation of motion of the nth droplet, considering both
drag and friction is, therefore, _rn � �u1d =u

1
oil�r�, in which

we calibrated drag and friction for an isolated droplet
moving at u1d [11].

Dispersion relations and breaking of antisymmetry.—
The phonon spectra are derived by linearizing the equa-
tions of motion for small deviations �xn; yn� 
 a:
 

_xn��2B
X1
j�1

�xn�j�xn�j�coth��j��csch2��j��;

_yn�
B
2

X1
j�1

�yn�j�yn�j��3�cosh�2�j���csch3��j��;

(3)

where B � �u1oil � u
1
d ��u

1
d =u

1
oil���

2R=W2� tan���=2� and
� � a=W. Substituting propagating plane wave solutions
we obtain the dispersion relations:

 !x�k���4B
X1
j�1

sin�jka�coth��j��csch2��j��;

!y�k��B
X1
j�1

sin�jka��3�cosh�2�j���csch3��j��:

(4)

The computed dispersion relations are superimposed on
the experimental data (Fig. 2). The theory recapitulates
breaking of the x-y antisymmetry j!x�k�j< j!y�k�j for all
k < �=a and fits the data satisfactorily without any adjust-
able parameters. The model is somewhat more accurate for
transversal modes than for longitudinal ones. Since the
amplitude of the modes decreases exponentially with �,
we could only sample a relatively small part of the pre-
dicted behavior of the system, shown in Fig. 4. The figure
shows the prediction for the normalized Cs as a function of
�, calculated for different crystal densities a=R. We note
that according to this prediction Cs diverges as �! 1 as
well as the frequencies of oscillations. In this limit the
droplets block the channel (plug flow) and it is difficult to
push liquid through the narrow necks, hence the crystal is
effectively incompressible. These ‘‘harder’’ modes are ex-
pected to have reduced amplitudes, which is consistent

W W+2δ

W−2δ

a. b. c.

d.

e.

FIG. 3 (color). (a),(b) Flow lines around a single confined
droplet (dark blue) are the result of summing the dipole flow
fields of its infinite array of reflections (gray). (a) When the
droplet is at the center of the channel, the array has uniform
spacing W. (b) When the droplet is off-centered, the reflections
array splits into two interlacing arrays. (c),(d) Flow lines around
three droplets with a longitudinal (c) and transversal (d) pertur-
bation. (e) Dipolar flow field of an unconfined droplet.
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with our observations [Fig. 2(i)]. The rich nonmonotonous
behavior of Cs stems from the interplay between the ex-
ponential decay and the divergence of the amplitude.

The breaking of the x-y antisymmetry in confinement
originates from the breaking of translation invariance in
the y direction. In the unconfined case interdroplet inter-
action is translation invariant. Therefore, for small dis-
placements (xn; yn) _xn /

P
j�n@x�d�r� rj� 

P
j�n�xn �

xj�@2
x�d��n� j�a� and similarly _yn /

P
j�n�yn �

yj�@
2
y�d��n� j�a�. Since�d satisfies the Laplace equation

@2
x�d � �@

2
y�d, the equations of motion for (xn; yn) are

identical up to a sign, thus the dispersion relations are
antisymmetric !x�k� � �!y�k�. In confinement, however,
where �d depends also on the distance from the sidewalls,
the equations of motion of x and y are different [Eqs. (3)
and (4)]; hence, !x�k� � �!y�k�.

To summarize, confinement of the 1D droplet crystal
enables one to observe a crossover between long-range and
screened hydrodynamic forces. The approach to incom-
pressibility and the divergence of sound velocity due to
blocking of the channel competes with the screening effect
to yield the observed rich phonon spectra. Investigation of
microfluidic phonons in other geometries may lead to other
interesting and unexplored spectra. The effect of bounda-
ries on long-range forces has also practical implications for
the design of droplet-generating devices.
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FIG. 4 (color online). Prediction for Cs as a function of � for a
few crystal densities a=R. The transversal (solid red) curve and
the longitudinal Cs (dashed blue) curve are normalized by
Cs�� � 0� of an unconfined crystal. Cs;x and Cs;y measured in
experiments (Fig. 2) are shown by closed circles and squares,
respectively.
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