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We describe a simple real space renormalization group technique for two-dimensional classical lattice
models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally
based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical
analogue of the density matrix renormalization group method. We demonstrate the method—which we
call the tensor renormalization group method—by computing the magnetization of the triangular lattice

Ising model.
DOI: 10.1103/PhysRevLett.99.120601

Introduction.—The density matrix renormalization
group (DMRG) technique has proved extraordinarily
powerful in the analysis of one-dimensional quantum sys-
tems [1,2]. Thus, it is natural to try to develop an analogous
renormalization group method in higher dimensions. Such
a method could solve many currently intractable problems
(such as the 2D Hubbard model).

Recent work has focused on generalizing DMRG to
higher-dimensional quantum systems [3]. But it is also
natural to try to generalize to higher-dimensional classical
lattice models. While classical real space renormalization
group methods (such as block spin methods [4]) have been
around for many years, they have never achieved the gen-
erality or precision of DMRG.

In this Letter, we address this problem in the two-
dimensional case. We use ideas from quantum informa-
tion theory to develop a numerical renormalization group
method that can effectively solve any two-dimensional
classical lattice model. The technique—which we call
the tensor renormalization group (TRG) method—has no
sign problem and works equally well for models with
complex weights.

Accurate numerical methods based on transfer matrices
[5,6] have already been developed for 2D classical sys-
tems. The advantage of the approach described here is that
it is a fully isotropic coarse-graining procedure, similar in
spirit to block spin methods. It is thus naturally suited to
investigating universal long distance physics. Also, on a
more theoretical level, the method reveals the relationship
between classical RG and quantum entanglement. Finally,
if only for its simplicity, we feel that the method is a useful
numerical tool in two dimensions as well as a natural
candidate for higher-dimensional generalizations.

Tensor network models.—The tensor renormalization
group method applies to a set of classical lattice models
called “tensor network models” [7]. Many well-known
statistical mechanical models, such as the Ising model,
the Potts model, and the six vertex model, can be written
naturally as tensor network models. In fact, as we show
later, all classical lattice models with local interactions can
be written as tensor network models [8].
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To describe a tensor network model on the honeycomb
lattice, one must specify a (cyclically symmetric) tensor
T;j, with indices i, j, k running from 1 to D for some D.
The corresponding tensor network model has a degree of
freedom i = 1, ..., D on each bond of the honeycomb lat-
tice. The weight for a configuration (i, j, k, . . .) is given by

67S(i’j,k’m) = TijkTilmT/'inqu ] (1)

where the product includes a tensor for each site of the
lattice (Fig. 1). The partition function is the sum of all of
the weights:

zZ= Z e_S(i’j'k“") = Z TijkTilmTjinqu s (2)
ijk... ijk...

In other words, the partition function is obtained by taking
the product of all of the tensors, contracting the pairs of
indices on each bond.

The TRG method.—The tensor renormalization group
method is a way to compute the partition function Z using a
real space RG flow. We explain the method in the case of
the honeycomb lattice. Each coarse-graining iteration is
made up of two separate steps. The first is approximate,
and the second is exact (Fig. 2). The first step is to find a
tensor S such that

ZSlinSjkn = ZTijm Tklm (3)

FIG. 1. A tensor network model on the honeycomb lattice.
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(we explain how to find such a tensor S at the end of this
section). The relation (3) is a very useful property.
Geometrically, it means that we can reconnect the lattice,
making the replacement

i S 1 i S 1
—)

T~ L “)
wherever we like, without affecting the partition function
Z. Applying this to the bonds shown in Fig. 2(a), we
change the honeycomb lattice to the new lattice shown in
Fig. 2(b). The partition function is now given by contract-
ing the S tensors on the new lattice.

The second step is now clear. We group together triplets

of neighboring points replacing them by a single lattice
point with a coarse-grained tensor 7"

¥-7 - ®
i i

Here the tensor 77 is given by contracting over the three
bonds of the triangle:

Tiy = zskpquqrsirp' (6)
par

Making this replacement everywhere gives a new
(coarser) honeycomb lattice [see Fig. 2(c)]. This completes
the coarse-graining transformation. The end result is that
the number of points in the lattice has decreased by a factor
of 3 and T has been replaced by 7".

Iterating this procedure, one can compute the partition
function of an arbitrarily large finite lattice. Thermo-
dynamic observables and correlation functions can be ob-
tained by taking numerical derivatives of F = — log(Z) or
by evaluating the free energy of more general models
where the tensors T, vary from site to site. An additional
feature is that the tensors T converge to a fixed point tensor
T*—whose physical significance we explain in the next
section. The method is not limited to the honeycomb lattice
and can easily be implemented on other lattices (see
Fig. 3).

To complete the discussion, we address the issue of
finding a tensor S which satisfies (3). The first step is to
think of 3, TijnThm as a D* X D? matrix M: My, =

FIG. 2 (color online).
comb lattice.

A TRG transformation on the honey-

> T ijmTrm- 1t is also useful to think of the tensor Sj;, as
a D* X D matrix S;; ,. Then the problem of satisfying (3) is
the problem of finding a D> X D matrix S such that M =
SST. In general, this factorization cannot be done exactly,
since M typically has rank D?, while SS” has rank at most
D.

However, an approximate solution can be obtained as
follows. The idea is to choose the matrix S that minimizes
the error, |M — SST|?; the optimal S can then be found
using the singular value decomposition of M. In more
detail, first, one writes My; j = > ,5,U li’nV]’f‘k,n (here s,
are the singular values and U, V are unitary matrices).
Second, one truncates the matrices Uj;,, Vi, keeping
only those columns corresponding to the largest D singular
values. The result is D> X D matrices U lins ij,,,. Finally,
one sets Sy, = /s, U 1i.n- This gives the required factoriza-
tion—provided that we adjust the phase ambiguity U;; , —
Ujin€'®, Vixn = Vjrne” "% appropriately. In practice, it is
often more convenient to ignore the phase adjustment issue
and set S, = /5, Ui» S5, = /5, V}i.,- The result is a
factorization 3, S} 8%, = 3, TijmTiim> Where S* and S”
differ by some phase factors. The TRG procedure can be
applied as before—the only difference being that we have
to keep track of two different tensors 74, T? for the A and
B sublattices.

We will show in the next section that the error for this
optimal decomposition is independent of the number of
iterations and can be made arbitrarily small by increasing
D. Indeed, the error vanishes as e ~ exp[—const X
(logD)?]—the same scaling behavior as the truncation
error in DMRG [2].

Physical picture.—In this section, we explain the phys-
ics behind the TRG method and give a physical interpre-
tation of the fixed point tensor T*. We begin by showing
how arbitrary classical models in two dimensions can be
thought of as tensor models on the honeycomb lattice. For
concreteness, we frame our discussion around the case of
the square lattice Ising model, Z = >, 1 exp(K ;500 )).
Consider the partition function Zx for some finite region R
in the plane. One way to compute Zy is to triangulate R,
dividing it into triangles of size L much larger than the
lattice spacing [ [Fig. 4(a)].

Consider one of the triangles. Imagine summing over all
of the lattice degrees of freedom within the triangle. The
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FIG. 3. A TRG transformation on the square lattice.
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result will yield some number ¥ = W({o; }) that depends
on the values of {c; } at the boundary of the triangle
[Fig. 4(b)]. It is convenient to separate out these boundary
degrees of freedom into three groups {0, }, {0} } {0, }
corresponding to the three sides a, b, ¢ of the triangle.
Denoting {c, } schematically by «, and similarly for
{o} }. {0}, we can think of ¥ as a three-index tensor ¥ =
Vopy-
To obtain the partition function for the region R, we
simply need to glue together all of the triangles and then
sum over the spins at their boundaries: Zz =
> apyse. YapyWase - This is nothing but the partition
function of a tensor model (2). (Actually, a more careful
analysis shows that the resulting tensor model has different
tensors W4, W2 for the A, B sublattices).

It is useful to think about the tensor renormalization
group transformation in this context. Recall that the first
step is to find tensors § satisfying >SSk, =
> mTijmTiim- Thinking in terms of the triangles, the right-
hand side is simply the partition function of the rhombus
obtained by gluing two triangles together. Thus, a solution
S can be constructed by setting S equal to the partition
function of one of the obtuse triangles obtained by dividing
the rhombus in the other direction:

D= o

Thus, the first step of the renormalization transformation
process simply changes the triangulation as shown in
Fig. 5(b). The second step also has a simple interpretation.
Examining the definition of 77, it is not hard to see that 7" is
simply the partition function of a large equilateral triangle,
obtained by gluing together three obtuse triangles:

A-d

Thus, the second step simply glues together triplets of

{o,1/ {0}
S
LN W({o, 1o, Lo, D
R
(a) (b)

FIG. 4. After (a) dividing R into triangles, (b) the partition
function of each triangle can be written as a function
Y({o, }. {0y} {0, }) of the boundary spins.

obtuse triangles to form larger equilateral triangles as
shown in Fig. 5(c). In this way, the TRG method builds
up larger and larger triangles.

However, there is one subtlety. As we build up larger and
larger triangles, the corresponding tensors will have indi-
ces with larger and larger ranges, increasing from 2-/! to

2V3L/1 16 23L/1 and so on. Yet, the TRG method insists on
approximating these tensors by a tensor with a fixed range
D. How can this approximation possibly be accurate?

To answer this question, we must explain the physical
meaning of W,z,. Let W be a tensor obtained from the
partition function of a very large triangle. Writing out the
labels «, B, y explicitly, we can write W as a function
Y({o,, } {04} {0, }) of the spins on the three sides of the
triangle. In fact, this function should be thought of as a
wave function for a one-dimensional quantum spin system
with spins living on the boundary of a triangle. This
interpretation comes from thinking of the original two-
dimensional classical model (e.g., the Ising model) as a
(1 + 1)-dimensional quantum model. We think of the di-
rection parallel to the boundary of the triangle as space and
the (radial) direction perpendicular to the boundary as
time. We imagine constructing a one-dimensional transfer
matrix or quantum Hamiltonian H living on the boundary
of the triangle, whose (radial) time evolution generates the
two-dimensional classical model in question. Then in this
picture, the function ¥({o, }, {0}, }, {0, }) is the result of
evolving H for a long time (the triangle is large). Hence, W
is simply the ground state of H—up to exponentially small
corrections.

If we assume that the original classical model (e.g., the
Ising model) is not critical, then W is the ground state of a
gapped Hamiltonian. Gapped ground states in one dimen-
sion have an important property: They are only weakly
entangled. More specifically, it is known that the density
matrix p(x, L) of a region of size x converges to a fixed
density matrix po as x, L — o0. Moreover, the size of the
mth eigenvalue A, of p, falls off rapidly with increasing
m: A, ~ exp[—const X log(m)?] [9].

It is this property which guarantees the accuracy of the
TRG method. Indeed, as a consequence of this property,
one can factor W into a product of three spin states on the
three sides of the triangle:

D .
\I,(O-a’ Tp, Uc) =~ Z lekqjg(o-a)\l,i}(o-b)\lﬂé(a-c) (9)

ijk=1

() (b) ()

FIG. 5. The tensor renormalization group transformation can
be viewed as a two-step change in the triangulation of R.
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FIG. 6. The magnetization of the triangular lattice Ising model
as a function of & = e¢2A7_ obtained using the TRG method.

with high accuracy. Such a factorization can be obtained
by choosing ¥, Wi, Wi to be the ith largest eigenstates
of the density matrices of sides A, B, C and letting T;ji be
the matrix elements of the tensor V(o ,, o), 0,.) between
these states. By the discussion above, the error € of this
representation is (i) independent of the size L of the
triangle and (ii) decreases rapidly with increasing D (€ ~
exp[—const X (logD)?]).

Thus, even though the exact tensor W g, has an expo-
nentially large range, one can make a change of basis so
that, in that basis, W can be accurately approximated by a
tensor 7 whose indices have a fixed range D. The TRG
method can be thought of as a numerical technique for
(approximately) constructing this tensor T, for larger and
larger triangles. The fixed point 7 is the value of this
tensor in the limit of an infinitely large triangle.

The above analysis was based on the assumption that the
classical model was not critical. If instead the classical
model is critical, the associated quantum states are gapless
ground states. Gapless ground states are more entangled
then their gapped counterparts. The entanglement entropy
S = —Tr(plogp) of aregion of size x in a system of size L
grows logarithmically with the region size S ~ log(x) [10].
This means that the factorization (9) will always break
down when the triangle is sufficiently large. Thus, in
principle, the TRG method—Ilike DMRG [2]—breaks
down at criticality.

A simple example.—In this section, we demonstrate the
method with a simple example: the triangular lattice Ising
model Z = 3,1 exp(BJY ;y0;0;). Note that the Ising
model partition function can be written as a sum over
domain wall configurations where the domain walls live
on the bonds of the honeycomb lattice. This domain wall
model can be easily realized by a tensor network with D =

2. We think of the state i = 1 as denoting ‘“no domain
wall” and i = 2 as denoting ‘“‘domain wall.” Then the
tensor with nonzero components

T111 — 1’ T122 — T212 — T221 = q, (10)

a = e *P/ | gives rise to the correct Boltzmann weight.
Applying the TRG method to the above tensor, we
compute the free energy per unit spin F = _ﬁ log(Z)

in the thermodynamic limit N — oo. The magnetization M
can be obtained by taking numerical derivatives of F
(though we need to use a more complicated tensor 7 to
represent an Ising model with an external magnetic field
H). Increasing D, the computation rapidly converges to the
exact result [11] except in an increasingly narrow interval
around the critical point a, = 1/+/3 (Fig. 6).

This interval becomes so narrow that one can study the
critical point itself. For example, the magnetization curve
for D = 34 predicts an @, within 10™* of the exact result.
One can even estimate the critical exponent 8 from the
scaling behavior of the magnetization. We find 8 = 0.12,
not far from the exact value B = 1/8. However, as ex-
plained earlier, the TRG method (like DMRG) is best
suited to studying systems off criticality. An interesting
question for further research is whether the TRG method
can be modified so that its (almost exponential) accuracy is
uniform, both away from and near critical points.
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