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In most studies of quantum channels, it is assumed that the errors in each use of the channel are
independent. However, recent investigations of the effect of memory or correlations in error have led to
speculation that nonanalytic behavior may occur in the capacity. Motivated by these observations, we
connect the study of channels with correlated error to the study of many-body systems. This enables us to
use many-body theory to solve some interesting models of correlated error. These models can display
nonanalyticities analogous to quantum phase transitions.
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An important problem in quantum information is the
determination of the channel capacity of noisy quantum
channels [1]. In a typical scenario, we wish to send infor-
mation over many uses of a noisy quantum channel. At a
cost of lowering the information content per particle, it can
be shown that quantum error correction can essentially
eliminate all errors. This leads to quantum analogues of
the channel capacity—the optimal rate at which informa-
tion may be transferred with vanishing error in the limit of
many uses. In this work, we will be concerned with the
capacity for transmission of quantum information [2],
which we denote Q�E� for a channel E.

Most works on quantum channels assume that the noise
is independent in successive transmissions. However, this
is never exactly true, and in many realistic systems there
can be correlations in the noise. Such channels are termed
‘‘memory channels,’’ and their capacity may be signifi-
cantly affected by memory effects (see [3] for a recent
experiment). Consequently, quantum memory channels
have received considerable attention recently (see, e.g.,
[4–7] and references therein). In most models that have
been considered explicitly (e.g., [5]), the correlations in the
noise are modeled by a small number of memory parame-
ters. Initial investigations of prototype models [5,6] have
suggested that the capacity may undergo sharp, nonana-
lytic changes at certain values of these parameters. These
investigations have not been conclusive, however, as with
current techniques these models cannot be analyzed in the
relevant setting of a very large (in fact, infinite) number of
channel uses.

The main aim of this work is to show that, for a variety
of interesting models, this obstacle can be overcome by
relating the study of memory channels to the study of
many-body physics. An advantage of the framework that
we introduce is that the criticality of the underlying many-
body systems can manifest itself as nonanalytic behavior in
the channel capacity of the corresponding memory chan-
nels, thus proving the conjectured existence of such effects
in memory channels. This suggests, as demonstrated here,

that the methods of many-body theory may be used in the
study of memory channels to obtain new results. In the first
part of the Letter, we discuss a general framework for the
channels that we consider, discussing how a capacity for-
mula may be derived. We then provide an explicit bound
applicable to random unitary [8] channels in terms of a
thermodynamic quantity. In the case of dephasing channels
that are random applications of orthogonal dephasing uni-
taries, this is exact.

Mapping many-body systems to memory channels.—A
standard way of describing noise is to assume that each
transmitted ‘‘system’’ particle interacts via a unitary U
with its own environment. In order to introduce memory
effects, we will modify this approach by asserting that the
environment particles are initially prepared in the thermal
or ground state of an interacting many-body Hamiltonian.
The spatial correlations in the environment then lead to
correlations in the noise. We will assume that, once the
environment has been defined by the parent Hamiltonian,
no further dynamics occur other than the system-
environment interaction. It is important to note that many
of the noise models considered in the literature [4–7] can
be reexpressed in precisely this way.

For the case of a memoryless quantum channel, it has
been shown [2] that the quantum capacity given by

 Q�E� � lim
n!1

I�E�n�
n

; (1)

where E is the channel acting on a single transmission, and
I�E� :� sup�fS�E���� � S�I � E�j ih j��g is the coherent
information of the quantum channel E, where S denotes the
von Neumann entropy, � is a state, and j ih j is a purifi-
cation of �. Finally, E�n represents the uncorrelated chan-
nel that acts on n inputs. For channels with correlations, the
channel on n inputs En differs from E�n1 , and one has to
describe the memory channel by a sequence of channels
fEng, describing the action of the channel for each number
of inputs n. Given that Eq. (1) is the memoryless quantum
capacity, one may anticipate that
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 Q�fEng� :� lim
n!1

I�En�
n

(2)

is the quantum capacity of a memory channel. While this
will certainly not be true in general, Eq. (2) is always an
upper bound on the channel capacity, and one can derive
conditions for equality which are often satisfied.

Condition for Eq. (2).—This section may be omitted by
readers not concerned with detailed proofs. We outline the
derivation of two conditions on the many-body system
which are sufficient to demonstrate that Eq. (2) is the
quantum capacity. These conditions are satisfied by a
variety of many-body systems, including matrix product
states [9] and quasifree bosonic systems [10]. The condi-
tions are derived as follows. We consider a translation
invariant chain of length N, split into v � N=�l� s� sec-
tions, each consisting of one live block of length l and one
spacer block of length s :� �l	 l. We define two related
channels: the live channel and the product channel. The
live channel is Elive :� A! TrenvfU��L1L2...Lv � A�U

yg,
where A is Alice’s input,U is the interaction between chain
and input, the L1; . . . ; Lv label the live blocks, and the
environment is traced out. The product channel is defined
as Eproduct :� A! TrenvfU���lN�

�v � A�Uyg, where �lN is
the reduced state of an individual live block. The next three
steps labeled (A), (B), and (C) construct an analogue of the
arguments made in Ref. [7] for forgetful channels.
(A) Showing that product classical codes are good classical
codes for the live channel. Given an achievable rate R for
the product channel, then 8 � > 0: 9N� such that for n >
N� channel uses there is a nl-qubit code f�ig1;...� and
decoding measurement fMig1;...� for � � b2nlRc such that
8 i: TrfEproduct��i�Mig 
 1� �. The same procedure used
for the live channel then yields, via the triangular inequal-
ity, TrfElive��i�Mig 
 1� �� 1

2 jj�L1L2...Lv � ��
l
N�
�vjj1.

This leads to our first condition on the many-body system:
It turns out that one can ensure that this error vanishes, for a
choice v � l5 [11], provided that it can be shown that
jj�L1L2...Lv � ��

l
N�
�vjj1 � CvlE exp��Fs� for positive

constants C, E, F (see [10]). Hence, if this condition holds,
the classical codes for product channels are also good
codes for the live correlated channel. (B) Computing
achievable classical rates. The product channel with live
block length l and a total number of spins N � v�l� s� �
l6�1� �� has a Holevo quantity given by ��ElN� �
��TrenvfU���

l
N� � ��U

yg�, where the � acts as a place
holder for the channel input and where EjX denotes the
effect of the full channel upon a contiguous subset of j �
X of the input spins. As in [7], we must now understand
when this expression converges to the regularized Holevo
bound of the full memory channel as l! 1. Suppose that
we have a spin chain of total length l� ��l�, where ��l�>
0 is any function such that liml!1��l�=l � 0. Using sub-
additivity and the Araki-Lieb inequality, we find
��Ell��� 
 ��El��� � 2� log�d�. Now we need to show
under which conditions this remains true if the subset

of l spins is drawn from a much longer chain of length N �
l6�1� ��. For any input! to the live block in question, the
output states will differ by at most jjTrenvfU�! � ��ll�� �

�l
l6�1���

��Uygjj1 � jjU�! � ��
l
l�� � �l

l6�1���
��Uyjj1 �

P�l;�� :� jj�ll�� � �lNjj1. Combining this with
��Ell��� 
 ��El��� � 2� log�d� and the Fannes inequality
yields liml!1��E

l
l6�1���

�=l 
 �1 � liml!12P�l;��l��


log�d�. This gives the second condition on the many-
body system: If we can pick ��l� such that liml!1��l�=l �
0 and liml!1P�l;��l�� � 0, then the regularized Holevo
quantity is the correct classical capacity. (C) Coherenti-
fication. The final step is to argue that the above arguments
for classical coding can be ‘‘coherentified’’ [2] into a
quantum code. This analysis does not give new conditions
on the many-body system and can be conducted as in
Ref. [7] (see [10] for details).

Explicit computation of capacities.—Even if the many-
body system can be well understood, the explicit compu-
tation of the capacity may still be difficult, as it depends
upon the interaction of each system with its environment
U. Judicious choice of U will allow us to obtain analyti-
cally solvable models. To this end, we will choose U to be
of the form of a controlled-PHASE gate, denoted by Uz,
where the environmental particles act as controls. In this
case, it becomes possible to write down explicit formulas
for Eq. (2) in terms of properties of the many-body envi-
ronment that share a close relationship with thermodynam-
ical quantities. For all other random unitary noise, the
approach leads to lower bounds, although they are not
always exact—see the concluding section for discussion.
For d-dimensional systems, the controlled-PHASE gate is
defined as Uz �

Pd
k�1 jkihkj � Z�k�, where Z�k� :�P

r exp�2�ikr=d�jrihrj, and the first tensor factor acts on
the environment. This interaction leads to channels that are
probabilistic applications of Z�k� unitaries on the system
particles, with the (correlated) probabilities determined by
the diagonal elements of the environment state. Now
Eq. (2) can be written as

 Q�fEng� � logd� lim
n!1

S�Diag��env��

n
; (3)

where Diag��env� is the state obtained by eliminating all
off-diagonal elements of the state of the environment in the
computational basis. Hence, computing the capacity of our
channel fEng reduces to computing the regularized diago-
nal entropy of the environment. Although this is unlikely to
be generally computable, it is amenable to a great deal of
analysis using many-body theory.

Proof sketch of Eq. (3).—The proof utilizes the Choi-
Jamiolkowski representation of the quantum channel.
Given any quantum operation E acting upon a d-level
quantum system, one may form the corresponding Choi-
Jamiolkowski (CJ) state J�E� � I � E�j�ih�j�, where
j�i � �1=

���
d
p
�
P
i�1...djiii. The proof of Eq. (3) follows

from three steps: (i) We argue that, for the kinds of chan-
nels we consider, a copy of J�E� allows one to physically
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implement the channel exactly; (ii) for any channel that
can be implemented using J�E�, we argue that the quantum
channel capacity Q�E� of the channel equals D1�J�E��, the
one-way distillable entanglement of the state J�E�; (iii) we
then use known results on D1.

Step (1).—For simplicity, we describe the argument for
channels E that are random applications of Pauli rotations
on a single qubit. The argument generalizes easily to Pauli
channels on many qubits. Suppose that you have J�E� and
you want to implement one action of E upon an input state
�. This can be achieved by teleporting � through J�E�. This
will leave you with a state E��i��

y
i �, with the Pauli error

�i depending upon the outcome of the teleportation mea-
surement. As E is a random Pauli channel, we can now
‘‘undo’’ the error by applying the inverse of �i. Hence, we
have �iE��i��

y
i ��i � E���, and we have implemented

one action of E.
Step (2).—Our aim is to show that, for channels that

may be physically implemented using J�E�, the one-way
distillable entanglement of J�E�, D1�J�E��, is equivalent to
Q�E�. In Ref. [12], it was essentially shown that Q�E� 

D1�J�E��. For the converse inequality, consider the specific
protocol: (a) Alice prepares many perfect EPR pairs and
encodes one half according to the code that achieves the
quantum capacity Q�E�. (b) She teleports the encoded
qubits through the copies of J�E�, informing Bob of the
outcome so that he can undo the effect of the Paulis.
(c) This effectively implements the channel E between
Alice and Bob. (d) Bob decodes the optimal code, thereby
sharing perfect EPR pairs with Alice, at the rate deter-
mined by Q�E�. As this is a specific one-way distillation
protocol, this means that Q�E� � D1�J�E��. These argu-
ments extend straightforwardly to any channel that is a
mixture of Paulis on many qubits.

Step (3).—The CJ states of our channel are the so-called
maximally correlated state, for which the distillable en-
tanglement is known and is given by the Hashing bound
[13] D1�J�E�� � S�TrBfJ�E�g� � S�J�E��, where S is the
von Neumann entropy. Hence, for such channels E, this
expression is also the single copy coherent information. In
our cases, we are interested in the regularized value of this
quantity, which is given by Eq. (3). This expression for the
coherent information has an interesting interpretation for
the dephasing interactions that we consider—it represents
the classical information lost to the environment that is
needed to correct the errors [14].

The simplicity of Eq. (3) enables one to immediately
write down many models for which Eq. (2) can both be
calculated and also represents the quantum capacity.

Classical environments.—We discuss briefly two cases.
If the environment consists of classical systems described
by a classical Markov chain, then in a large number of
cases Eq. (3) can be written explicitly with a simple
expression that represents the entropy rate of the Markov
chain [15]. Related results on Markov chain models have
been obtained using different methods in Ref. [16]. In

general, a classical environment is represented by a diago-
nal state, and the second term of Eq. (3) is precisely the
entropy. Hence, in this case the capacity becomes

 Q�fEng� � 1� log2�e�
�

1� �
@
@�

�
lim
n!1

1

n
lnZn; (4)

where Zn is the partition function for n environment spins,
� � 1=kBT, and the log2�e� converts from nats to bits.
Equation (4) shows that we can now use results from
classical statistical physics to compute the capacity—any
classical spin-chain models with sufficiently decaying cor-
relations that can be solved exactly will lead to memory
channels that can be ‘‘solved exactly.’’

Quantum environments.—For quantum environments,
Eq. (3) represents the entropy that results when every
environment qubit is completely dephased. Although this
quantity is not standard in statistical physics, we expect
that it may be amenable to the techniques of many-body
theory. Here we provide support for this claim by solving
analytically a class of quantum environments inspired by
recent work on matrix product states (MPSs) [17]. For
MPSs, the two conditions required to prove Eq. (2) are
satisfied except at transition points [9].

In Ref. [18], it was shown that there are Hamiltonians
that exhibit quantum phase transitions and have ground
states that are MPSs involving only rank-1 matrices. We
will now show that for MPSs involving rank-1 matrices a
full analytical treatment of the quantum channel capacity
of the associated memory channel becomes possible. To
this end, we demonstrate that the diagonal elements of such
rank-1 MPSs are given by the probabilities of microstates
in related classical Ising chains. For simplicity, we will
focus on a translationally invariant MPS for a 1D system of
2-level particles with periodic boundary conditions.
Generalization to other rank-1 MPSs is straightforward.
Such an environment state is characterized by two matrices
Q0 and Q1 and is given by j i �

P
i1;...;iNTrfQi1 . . .QiN g


ji1 . . . iNi. The unnormalized state resulting from dephas-
ing each qubit is

 � �
X

i1;...;iN

Tr

(YN
k�1

�Qik �Q
�
ik
�

)
ji1 . . . iNihi1 . . . iNj: (5)

Relabeling the matrices Ai � Qi �Q�i , the diagonal ele-
ments in the computational basis are of the form Trf

Q
kAkg.

As the Ai are both rank-1 with unique nonzero eigenvalues
ai, the normalized matrices ~Ai � Ai=ai satisfy ~A2

i � ~Ai.
Using this idempotency, it is easy to show that, if ji1 . . . iNi
has l occurrences of 0 and N � l occurrences of 1, and K
boundaries between blocks of 0s and blocks of 1s, then the
corresponding diagonal element of � will be p�l; n�
l; K� � �albN�l�Trf� ~A0

~A1�
Kg=C�N�, where C�N� is a nor-

malization factor. Noting that ~A0
~A1 is also rank-1, denote

its nonzero eigenvalue by c. Hence, the diagonal elements
are p�l; n� l; K� � albN�lcK=C�N�. Hence, for channels
described by rank-1 MPSs, a, b, and c are the only relevant
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parameters, and we may choose any matrices with those
parameters. We choose the matrices of a classical (i.e.,
diagonal) chain:

 A0 �
a

���������
cab
p

0 0

 !
; A1 �

0 0���������
cab
p

b

� �
: (6)

Here we have assumed that c > 0 (which is guaranteed for
N > 5, as otherwise the state can become nonpositive). It is
then easy to check that these matrices have the correct
values of a, b, and c, as required. We choose this form
because the matrices are essentially the top row and bottom
row of a transfer matrix [19] corresponding to a classical
Ising chain. Roughly speaking, the parameter c encodes the
coupling between adjacent antiparallel spins, and the a and
b encode the coupling between adjacent parallel spins.

This connection implies that the limit in Eq. (3) can be
computed easily using well-known methods [19]. Figure 1
shows the result for a Hamiltonian presented in Ref. [18]
for which the ground state is known to be a rank-1 MPS
possessing a nonstandard ‘‘phase transition’’ at g � 0 [20],
at which some correlation functions are continuous but
nondifferentiable, while the ground state energy is actually
analytic [18].

Figure 1 shows that this is mirrored in the nonanalyticity
of the channel capacity.

Generalizations and future work.—It is important to
know whether our approach could prove useful for other
interactions. Some generalizations are immediate. For in-
stance, given any channels that are probabilistic applica-
tions of unitaries, expression (3) can easily be shown to be
an explicit lower bound to the coherent information, and
hence, if the environment state has sufficiently decaying
correlations, it will also be a lower bound to the channel

capacity. It is likely that any channel whose capacity can be
bounded by such a simple entropic expression will benefit
from similar insights. In the long term, one might speculate
that there may be a deeper explanation for these connec-
tions—not in terms of entropic expressions appearing in
both fields, but in terms of a link between coding and
many-body physics.
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FIG. 1. A sketch of the capacity for an environment that is the
ground state of the Hamiltonian

P
i2�g

2 � 1��iz�
i�1
z � �1�

g�2�ix � �g� 1�2�iz�
i
x�

i�1
z [18]. The plot’s symmetry is ex-

pected as the channel is invariant under g! �g. However,
near the phase transition g � 0, the gradient diverges.
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