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We present a first-principles method for the determination of the van der Waals interactions for a
collection of finite-sized macroscopic bodies. The method is based on fluctuational electrodynamics and a
rigorous multiple-scattering method for the electromagnetic field. As such, the method takes fully into
account retardation, many-body, multipolar, and near-fields effects. By application of the method to the
case of two metallic nanoparticles, we demonstrate the breakdown of the standard 1=r2 distance law as the
van der Waals force decays exponentially with distance when the nanoparticles are too close or too far
apart.
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The van der Waals (vdW) interactions between macro-
scopic particles have attracted a great deal of attention in
recent years due to the advances in nanoscience. The physi-
cal origin of the vdW interactions are the irreducible elec-
tromagnetic (EM) fluctuations of vacuum [1,2]. Histori-
cally, Hamaker [3] extended the intermolecular vdW force
to macroscopic bodies by the simple pairwise summation
of those vdW interactions between the molecules of the
interacting bodies [4]. Because the original London–
van der Waals force, the basis for Hamaker’s treatment,
did not take the finiteness of the speed of light (retardation
effects) into account, from the outset it pertained only for
small distances. For large separations between the macro-
scopic bodies, retardation effects come into play and a
more general theory of the vdW force is needed. The first
approach dealing with such effects was given by Casimir
and Polder [5] who derived an analytic formula of the
retarded vdW force between two neutral atoms. Later on,
Lifshitz [6] developed a general theory of the vdW forces
between macroscopic entities which was based on fluctua-
tional electrodynamics [1,2] and the condensed phase ma-
terial properties of the interacting bodies rather than the
polarizabilities of their isolated molecular constituents.
Less involved derivations of the Lifshitz formula in the
retarded [7] and nonretarded limit [8,9] have also been
reported. A third approach was given by Dzyaloshinskii
and Pitaevskii [10] based on quantum field diagrammatic
techniques. From the above methods, the Lifshitz theory
provides the most physically transparent picture, but, so
far, it has been applied primarily to planar geometries.

Here, we focus on macroscopic objects of finite size,
such as spheres, aiming to provide a rigorous EM theory
for the vdW forces between such objects. A precise knowl-
edge of the vdW forces can be very important in colloidal
science, where usually the vdW force among the constitu-
ent micro- or nanoparticles relies on the approximation of
pairwise forces within the Hamaker (nonretarded) ap-
proach [4]. In some cases, elements of the Lifshitz theory
for half-spaces are incorporated within the Hamaker for-

mula for the vdW force between two particles, in the form
of semiempirical corrections [4,11,12]. Alternative ap-
proaches [9,13–15] calculate the iterated dipole interac-
tions among the interacting bodies modeled as comprised
of discrete, molecular Drude oscillators, in one case, or as
dielectric spheres interacting via multipolar interactions.
By employing perturbation theory and the Clausius-
Mosotti relation to replace the molecular polarizabilities
by the dielectric permittivity, ��!�, Langbein [13] derived
expressions for the electric multipole interactions of
spheres to all orders (including retardation).

In this Letter we present a rigorous theory based on
fluctuational electrodynamics for the calculation of the
vdW interactions among a collection of macroscopic
bodies of finite size. The vdW force is provided by the
fluctuation-dissipation theorem and hence by the Green’s
tensor of the classical EM field based on an EM multiple-
scattering formalism for arbitrary collections of scatterers.
This formalism goes beyond the approximation of pairwise
interactions between the scatterers and takes into account
the full multipole interactions between them. Furthermore,
since it constitutes a solution of the inhomogeneous wave
equation, retardation effects are included a priori. We also
note that the presented method treats metallic and dielec-
tric particles on an equal footing since it also accounts for
the magnetic-field vacuum fluctuations which cannot be
neglected in the case of metallic particles. Finally, the
effect of finite temperature can be easily addressed.

We consider a finite scatterer with electric permittivity
�s and/or magnetic permeability �s different from those,
�h, �h of the surrounding homogeneous medium. Accord-
ing to classical electrodynamics, the exerted force F on a
finite scatterer in the presence of electric E and magnetic
H fields satisfying the Maxwell equations is obtained by
integrating the time-average Maxwell stress tensor Tij [16]
over the surface around the scatterer: hFiit �R
S

P
jhTijitnjdS where h::it denotes the time average, n is

the normal vector at the surface surrounding the object, and
i, j�x, y, z. The components of the tensor hTijit are given
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by
 

hTijit � �h�0hEi�r; t�Ej�r; t�it ��h�0hHi�r; t�Hj�r; t�it

�
1

2
�ij

�
�h�0

X
i0
hEi0 �r; t�Ei0 �r; t�it

��h�0

X
i0
hHi0 �r; t�Hi0 �r; t�it

�
: (1)

�ij is the Kronecker symbol and �0, �0 are the electric
permittivity and magnetic permeability of vacuum, respec-
tively. In the absence of other radiation sources, the fields
E, H are generated by the thermal radiation emitted from
the same or neighboring scatterers at finite temperature
(thermal fluctuations) or by vacuum radiation at zero tem-
perature (zero-point fluctuations). The time-correlation
function hEi�r; t� ��Ej�r0; t�itfor � � 0 contained in
Eq. (1) is calculated within the framework of fluctuational
electrodynamics [1,2], namely, from [17]

 hEi�r;t���Ej�r0;t�it�Re
Z 1

0

d!
2�

ei!�WEE
ij �r;r

0;!�: (2)

The quantity WEE
ij �r; r

0;!� is the cross-spectral correlation
function for the electric field. For a system at thermal equi-
librium, i.e., the scatterer, the surrounding medium and its
neighboring scatterers at the same temperature T, Wij is
provided by the fluctuation-dissipation theorem [1,2,17];
i.e., WEE

ij �r; r
0;!� � 4!�h�0c2ImGEE

ij �r; r
0;!��

�@!���!; T��, where ��!; T� � @!=�exp�@!=kBT� �
1�, @ is the reduced Planck’s constant, kB is the
Boltzmann’s constant, and GEE

ij �r; r
0;!� is the component

of the full Green’s tensor Gij which provides the electric
field at r due to an electric-dipole source at r0. hHi�r; t�
��Hj�r0; t�it is given similarly to Eq. (2) with WEE

ij sub-
stituted by WHH

ij �r; r
0;!� � 4!�h�0c

2ImGHH
ij �r; r

0;!��
�@!���!; T��.

We consider a collection of N nonoverlapping scatterers
described by a permittivity �s and permeability �s cen-
tered at sites Rn in a homogeneous host medium de-
scribed by �h, �h, respectively. In site-centered represen-
tation, the Green’s tensor for the system of scatterers
satisfies [18,19]

 

X
i

�!2�i00i ��i00i�Rn � rn��Gii0 �Rn � rn;Rn0 � r0n0 � � �i00i0��rn � r0n0 ��nn0 ; (3)

where rn � r�Rn, r0n0 � r0 �Rn0 and i, i0 � x, y, z. The operator �i00i�r� is given by ��r� � c2=���r���r��r� r� and
c is the speed of light in vacuum. It can be verified that the Green’s tensor satisfying Eq. (3) reads [18,19]

 Gii0 �Rn � rn;Rn0 � r0n0 � � G�s�nii0 �rn; r
0
n0 ��nn0 � i!

��h�h�
3=2

c3

X
LL0

�RnL;i�rn�D
n0n
L0LR

n0
L0;i0 �r

0
n0 �: (4)

The index L denotes collectively the indices Plm, where
l � 1; 2; . . . is the angular-momentum number, m the mag-
netic number (�l 	 m 	 l) and P � E,H denotes the two
independent polarization modes. G�s�nii0 �rn; r

0
n0 � is the

Green’s tensor for a single scatterer located at Rn [18].
Dnn0
LL0 are propagator functions that represent the contribu-

tions of all possible paths by which a wave outgoing from
the n0th scatterer produces an incident wave on the nth
scatterer, after scattering in all possible ways (sequences)
by the scatterers at all sites including the nth and n0th
scatterers. They are given by [18]

 Dnn0
LL0 � �nn0

LL0 �
X
n00

X
L00

X
L000
Dnn00
LL00T

n00
L00L000�

n00n0
L000L0 : (5)

�nn0
LL0 transforms an outgoing vector spherical wave about

Rn0 into a series of incoming vector spherical waves
around Rn [18]. The vector functions RnL;i�rn�; �RnL;i�rn�
are the dimensionless eigenfunctions of �i00i�r� for a single
scatterer which are regular at its center [18]. Finally, the
matrix TnLL0 is the scattering T matrix [18] of a scatterer of
general shape, located at Rn. For the Green’s tensors GEE

ij
and GHH

ij contained inWEE
ij andWHH

ij , the appropriate trace
of Eq. (4) should be taken.

For computing convenience, in the actual calculation of
the vdW force for T � 0, we first integrate the Maxwell

stress tensor for a specific frequency over the surface of the
body and afterwards we perform the frequency integration,
i.e., the vdW force F is calculated by integrating the force
spectrum F�!�: F �

R
1
0 F�!�. Both integrals are obtained

numerically. We note that, in the Lifshitz theory for half-
spaces [20] or point dipoles [21], the frequency integration
is done analytically using contour integration. The numeri-
cal integral over frequencies is convergent since, in the
limit of !! 1, the refractive index of most materials
tends to unity and the corresponding Green’s tensor of
the system tends to that of vacuum which is constant in
space. However, the integral over a closed surface of a
constant tensor vanishes and therefore F�!� ! 0 as !!
1.

The accuracy of the presented method stems from the
fact that it involves a minimum of assumptions, apart from
an unavoidable cutoff lmax in the angular-momentum ex-
pansion of the EM field and the implicit use of the semi-
classical approximation in the coupling of the fields and
particles. As such, the method includes all essential electric
and magnetic multipole terms as well as the important
surface-plasmon contributions for conductors in the EM
response of the scatterers and is valid for any distance
between the scatterers. In contrast, both magnetic and
plasmon contributions are omitted in Langbein’s and re-
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lated work, [9,14,21], thereby restricting their applicabil-
ity. When more than two scatterers are present, the
multiple-scattering process described by Eq. (5) includes
all possible many-body interactions between the scatterers
and therefore goes beyond the approximation of pairwise
interactions which is usually employed in molecular-
dynamics simulations. Since the presented formalism al-
lows for a first-principles calculation of the vdW force
between macroscopic bodies such as micro- and nanopar-
ticles (the formalism depends only on the dielectric func-
tion of the bodies), one can devise a corresponding first-
principles molecular-dynamics method for such particles
by analogy to the Car-Parrinello molecular-dynamics
method for atoms and molecules [22].

We apply the presented theory to the case of two spheri-
cal metallic nanoparticles of radius S � 10 nm whose
dielectric function is described by a Drude-type formula
�s�!� � 1�!2

p=�!�!� i�
�1�� where !p is the bulk

plasma frequency and � the relaxation time of the
conduction-band electrons of the metal. We have chosen
@!p � 9:2 eV which corresponds to the bulk plasma fre-
quency of silver. The losses are taken to be @��1 �
0:11 eV which contains both the bulk value and the cor-
rection due to the scattering of the metal electrons at the
particle boundary [23]. The particles are assumed to be
held at zero temperature (T � 0), since the dominant con-
tribution to the vdW force stems from the vacuum fluctua-
tions in the optical region where the finite-temperature
(thermal) contribution is negligible. Had the contribution
to the vdW force originated from the near-infrared or
infrared regime, the thermal contribution would have
been more appreciable [24]. Practically, the spectral con-
tribution to the integral of Eq. (2) for !>!p is vanish-
ingly small. This is in agreement with the cutoff of
!c � c=a0 for the intermolecular vdW force introduced
by Lu and Marlow [25], where a0 is the characteristic
molecular size (in our case the characteristic length is a0 �

c=!p).
In Fig. 1 we show the force spectrum F�!� for various

particle separations r. As expected, the force spectrum
decreases with increasing distance. The distinct features
of F�!� stem from the surface-plasmon resonances of
the individual metal nanoparticles occurring at e!l ’

!p

���������������������
l=�2l� 1�

p
; l � 1; 2; . . . . Hence, the low frequency

peak corresponds to the dipolar surface plasmon, the next
peak to the quadrupolar one while the rest of the surface
plasmons are more or less submerged to a single peak. The
curve for r � 2:5 nm converges for angular-momentum
cutoff lmax � 11 while the other curves for lmax � 7. As
the particles come closer, the contribution of the higher-
multipolar terms in the force spectrum becomes much
more significant than the dipolar one, a result that is con-
sistent with the characteristic rapid decrease of multipolar
potentials with increasing separation and the literature on
multipolar, molecular van der Waals interactions. More-

over, the magnetic-field vacuum fluctuations become
equally important as the electric-field ones for separations
larger than approximately 4 nm. The above findings reveal
the inadequacy of the electric-dipole approximation in this
case. However, if a constant permittivity �s is assumed
over the given frequency region instead of the Drude-type
one, the electric-dipole contribution is dominant and
higher-multipoles provide small corrections to the vdW
force, in agreement with Ref. [13].

By integrating F�!� over frequencies we obtain the vdW
force for a certain interparticle distance. In Fig. 2 we show
the vdW force between the two silver nanoparticles as a
function of their surface-to-surface distance. From
Fig. 2(a) it is obvious that we have deviations from a
power-law behavior which would have been manifested
as a straight line in a log-log plot: according to the
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FIG. 1 (color online). Spectrum F�!� of the vdW force be-
tween two silver nanospheres (S � 10 nm) for various surface-
to-surface distances.
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FIG. 2. vdW force between two silver nanospheres of radius
S � 10 nm as a function of their surface-to-surface distance, in
log-log scale (a) and log-linear scale (b).

PRL 99, 120406 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
21 SEPTEMBER 2007

120406-3



Hamaker approach, the nonretarded vdW force between
two macroscopic spheres decreases as 1=r2 with distance r.
By comparing Figs. 2(a) and 2(b), we identify approxi-
mately three different regimes in terms of the distance
dependence of the force. The first regime is 0< r &

3 nm, the second 10 & r & 20 nm, and the third is r *

20 nm. In the first regime, 0< r & 3 nm, the force de-
creases exponentially as it is evident from the linearity of
the curve of Fig. 2(b) within this range of distances. The
corresponding decay length is about 0.8 nm. The exponen-
tial decay is also evident in the force spectrum F�!�. To the
best of our knowledge, an exponential decay for the vdW
force for such small separations has not been reported in
literature, and it must be near-field effect. A similar ex-
ponential behavior has been observed for the thermal
emission spectrum from a planar surface [26] and it has
been attributed to the evanescent modes of the EM field
(near-field modes) which are dominant for short distances
from the surface. However, for such short distances, the
atomic structure of the particles becomes evident and a
more accurate description of the vdW interaction possibly
requires a microscopic treatment which accounts for Born
repulsive forces stemming from exchange and electrostatic
interactions [27]. In the second regime, 10 & r & 20 nm,
the curve of Fig. 2(a) is linear and the vdW force decreases
approximately as 1=r5=2. This is again remarkably different
from the 1=r2 Hamaker behavior. Similar deviations from
the standard integer exponents have been reported for the
nonretarded vdW force between anisotropic nanostructures
[28]. The region from 3 & r & 10 nm is a crossover re-
gime where neither an exponential nor a power-law func-
tion can be successfully fitted. Last, in the third regime,
r * 20 nm, the force decreases again exponentially with a
decay length of about 10 nm. The much faster decay of the
force in this regime is attributed to the retardation effects
which become important for such separations. In the
electric-dipole approximation, the retarded vdW potential
becomes larger than the nonretarded one for separations
r * c=2! [21,29]. Since the main contribution to F�!� is
generated by the surface-plasmon resonances, i.e., around
!=!p � 1=

���
3
p

, the threshold of retardation effects in our
case (@!p � 9:2 eV) is r ’ 18:5 nm. The breakdown of
the vdW power law due to retardation has been also
predicted for aerosol particles [15].

In conclusion, we have presented a first-principles
method for the calculation of the vdW forces between
finite-sized macroscopic objects, based on the
fluctuation-dissipation theorem and a rigorous multiple-
scattering theory. The formalism is applied to the case of
the vdW force between two metal nanoparticles. We have
shown that the higher-multipolar contribution to the force
is dominant for small particle separations and that dramatic
deviations from the standard 1=r2 power-law occur as a
result of near-field and retardation effects.
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