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We discuss the finite temperature properties of ultracold bosons in optical lattices in the presence of an
additional, smoothly varying potential, as in current experiments. Three regimes emerge in the phase
diagram: a low-temperature Mott regime similar to the zero-temperature quantum phase, an intermediate
regime where Mott insulator features persist, but where superfluidity is absent, and a thermal regime
where features of the Mott insulator state have disappeared. We obtain the thermodynamic functions of the
Mott phase in the latter cases. The results are used to estimate the temperatures achieved by adiabatic
loading in current experiments. We point out the crucial role of the trapping potential in determining the
final temperature, and suggest a scheme for further cooling by adiabatic decompression.
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Ultracold gases in optical lattices are currently a major
topic in the field of ultracold atoms, both experimentally
and theoretically (see the reviews [1–4]). So far, experi-
ments are mostly carried out with Bose gases, and inter-
preted in terms of the zero-temperature phase diagram of
the Bose-Hubbard model [1,3,4]. However, actual experi-
ments inevitably take place at finite temperatures, which
leads, e.g., to residual number fluctuations. In view of its
importance for applications such as the controlled genera-
tion of entangled states [1], or the study of quantum
magnetism [3], this issue has recently received increasing
interest [5–13]. In this Letter, we first discuss how the
phase diagram of a ultracold Bose gas in an optical lattice
is modified at finite temperatures. We identify a melting
temperature T� � 0:2U=kB, above which the system is
entirely thermal, and a much lower critical temperature
Tc � zJ, above Mott regions survive, but superfluidity is
absent. Here z is the coordination number, U the on-site
interaction energy, and J the tunneling energy. We derive
analytically the thermodynamics of the Mott phase for T <
T�, including particle-hole corrections. Finally, we model
the procedure adopted in current experiments to produce
quantum gases in optical lattices, where a Bose-Einstein
condensate is slowly loaded into the optical potential in
the presence of an ‘‘external’’, smoothly varying trap.
Assuming the loading is done adiabatically, we estimate
the final temperatures that can be reached with this proce-
dure. We point out the crucial role of the external potential
in determining the final temperature, and suggest a scheme
for further cooling by adiabatic decompression.

For future reference, we first recall the phase diagram for
zero temperature. For J � 0, the ground state is a product
of identical Fock states, with n0 atoms at each site depend-
ing on the chemical potential � according to n0 �
Integer��=U� � 1. When a weak tunneling between near-
est neighbors is allowed, the ground state remains a Mott
insulator with suppressed number fluctuations but only in
well-defined domains (‘‘Mott lobes’’) in the J-� plane
(dashed lines in Fig. 1). Outside these domains, the MI is

unstable towards a delocalized, superfluid state (SF), that
connects to a condensate in the Bloch state q � 0 when
J� U. In current experiments, an external harmonic po-
tential of the form VT�r� � 1

2m!
2
Tr

2 is usually superim-
posed on the lattice potential. As a result, the density
profile is in general not uniform everywhere, but has the
shape of a ‘‘wedding cake’’ formed by successive layers
(‘‘Mott shells’’) with integer densities [14]. If this potential
varies slowly over a few lattice sites, the local density
approximation (LDA) can be employed. It obtains the
(coarse-grained) number nh��; T	 and entropy sh��; T	
densities calculated as in the homogeneous case, but for
a local chemical potential �0 
 VT�r� � �loc�r�. In the
following, we first compute the phase diagram for uniform
systems, and use the LDA to describe trapped gases.
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FIG. 1 (color online). Phase diagram for an ultracold Bose gas
in an optical lattice at finite temperatures (kBT � U=20). The
finite-temperature Mott lobes boundaries are shown as solid
lines, and the zero-temperature boundaries as dotted lines for
comparison. With increasing temperature, the superfluid regions
in between the Mott lobes shrink in width and shift to larger
tunneling energies. For temperatures zJ < T, the SF-MI transi-
tion is replaced by a smooth crossover between two Mott
domains across a normal phase. This generic phase diagram
persists up to the melting temperature T� � 0:2U, where the
Mott domains vanish.
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Within a Mott domain with n0 bosons per site, the
lowest-lying excited states are ‘‘particle’’ and ‘‘hole’’
states, where a supplementary particle is added (removed)
to the background value n0 with a free energy cost Un0 

� [��
U�n0 
 1�]. Other occupation numbers corre-
spond to free energies at least of order U, and are therefore
suppressed by a thermal factor�e
�U � 1. This allows us
to use what we call the ‘‘particle-hole approximation’’
(PHA) [8,9,15,16], which consists in truncating the on-
site Hilbert space to the states n0, n0 
 1, and n0 � 1. As
we will see, this approximation, valid for temperatures
kBT � U , allows us to describe quite extensively the
physics of the insulating phase at finite temperatures.

As a starting point, we first neglect tunneling between
the wells completely and consider the thermodynamics of a
uniform system of isolated wells, where the atoms interact
locally through the on-site interaction. Since the wells are
independent, the global partition function factorizes into a
product of identical on-site partition functions z0 �P
n exp�
��E�n� 
�n�	, where E�n� � Un�n
 1�=2

and � � 1=kBT. Keeping only the particle or hole excita-
tions with energies E�qp�

0 � Un0 and E�qh�
0 � U�n0 
 1�,

the mean density and variance of density fluctuations
take the simple forms

 �n 0 � n0 � �B��� 
 B�
��=z0; (1)

 Var �n�0 � �B��� � B�
��=z2
0; (2)

where B��� � e���
Un0	 and B�
� � e��U�n0
1�
�	 are
Boltzmann factors corresponding, respectively, to adding
or removing a particle from the ‘‘background’’ value n0,
and where z0 � 1� B��� � B�
�. In Fig. 2, we have shown
the density and fluctuations as a function of the chemical

potential. With increasing temperatures, the steplike den-
sity profile characteristic of a Mott state becomes increas-
ingly smoother, reflecting the fact that the free energy cost
to create supplementary particles or holes vanishes near the
edges of a Mott plateau. A Mott-like region survives up to
T� � 0:2U=kB (see also [7]), which can be seen as a
melting temperature for the Mott phase. We have also
compared the exact expressions to the PHA, without no-
ticeable difference up to T�.

With the properties of the zero-tunneling model clari-
fied, we reintroduce tunneling in a second step. At zero
temperature, when exploring a Mott domain at constant J
and varying chemical potential, the Mott state remains
stable as long as its elementary (quasiparticle and hole)
excitations are. At the upper or lower Mott lobe bounda-
ries, the chemical potential ��
� becomes equal to the
excitations energies E�qp=qh�

k�0 , thus favoring the proliferation
of particle or hole excitations to reduce the free energy
[17]. To investigate how this behavior changes with in-
creasing temperature, we have calculated the quasiparticles
and holes dispersion relations at finite temperature using
the PHA supplemented by a random-phase approximation
as in [5,18–20]. We find

 E�qp=qh�
k �

CJk

2
�U

�
n0 


1

2

�

�k; (3)

with �k �
���������������������������������������������
C2J2

k � 2UDJk �U2
q

, Jk � 
2zJ�k, and
�k �

1
z

P
i�1 cos�kid�. The finite temperature dispersion

relations are formally similar to the zero temperature ex-
pressions [18] except for the factors C=D � �n0 �

1�A�qp� � n0A
�qh�, with A�qp=qh� � �1
 B�
��=z0.

In the following, we mostly work for simplicity in the
limit U� zJ, where the dispersion relations reduce to
E�qp=qh�

k � E�qp=qh�
0 � J�qp=qh��k, with an effective tunnel-

ing energy J�qp� � zJ�n0 � 1�A�qp� for particles and J�qh� �

zJn0A�qh� for holes. We concentrate first on the upper
boundary and try to find the chemical potential for which
E�qp�

k�0 � ����. Introducing a variable s � �Un0 


�����=kBT, we find that, up to terms �e
�U, s solves the
equation s
 a tanh�s2� � 0, with a � zJ�n0 � 1�=kBT.
Graphic inspection shows that there is no solution for a <
2, corresponding to a critical temperature kBTc � zJ�n0 �
1�=2 above which there is no SF region left due to thermal
depletion. This argument holds far from the zero-
temperature Mott transition, where Eqs. (3) are valid. To
obtain the complete phase boundaries, we have solved
numerically the equations E�qp=qh�

k�0 � ��
� for any zJ=U.
The result is shown in Fig. 1, where three distinct regions
emerge. For zJ� 2kBT=�n0 � 1�, one goes continuously
from one insulating ‘‘lobe’’ to the other through a region in
the normal phase. For 2kBT=�n0 � 1� � zJ� zJc, well-
defined Mott lobes survive, as in the ground state, and
above the critical Jc a phase transition takes place to a
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FIG. 2 (color online). Density profile and fluctuations for an
array of isolated wells (J � 0), shown for various temperatures.
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SF phase, albeit with reduced SF fraction. Above T � T�,
we expect the system to be essentially normal for J < U.
Note that when Mott regions with different filling factors
due to an external trap potential, the regimes described
above can coexist.

To characterize the thermodynamics for T < T� more
quantitatively, we calculate the free energy as F � F0 �

�F�qp� � �F�qh�. The first term F0 � 
kBT ln�1� B��� �
B�
�� gives the free energy corresponding to the thermal
activation of local defects in each well for zero tunneling.
The remaining contributions �F�qp� � FBE�E

�qp�
k 
�	 


FBE�Un0 
�	 and �F�qh� � FBE��
 E
�qh�
k 	 
 FBE��


U�n0 
 1�	 describe instead dilute gases of quasiparticles
and quasiholes mobile through the lattice. Here, the func-
tional FBE�x	 �

P
k ln�1
 exp��x�	 gives the free energy

of an ideal Bose gas. For U� J, we obtain for instance

 

�F�qp�

NskBT
� 


X1
m�0

em���
Un0�

m

�
I0

�
m�J�qp�

D

�
D

 1

�
; (4)

and a similar expression for �F�qh�. Here I0 is a Bessel
function, and D the dimensionality.

Thermodynamic quantities follow from derivatives of
the free energy. Contributions from local activation, de-
noted by the index ‘‘0’’ have been calculated above. Terms
coming from particle and hole contributions are readily
obtained. For instance, the particle or hole corrections to
the average density read � �n�qp=qh� � 
@�F�qp=qh�=@�,
whereas the density fluctuations can be characterized using
the Hellmann-Feynman theorem, [21], which to leading
order in e
�U, reduces to Var�n� � Var�n�0 �� �n�qp��1

� �n�qp�� 
� �n�qh��1�� �n�qh��.

In the low-temperature limit, T � Tc, the contribution
of local activation terms is negligible, and tunneling cor-
rections to the thermodynamic functions dominate. How-
ever, using the asymptotic form for I0 we find for instance
�F�qp�=NskBT � �kBT=4�J�n0 � 1�	3=2g5=2�e���
�

�����,
where g��x� �

P
nx
n=n� denotes a Bose function. The

prefactor implies that corrections to the zero-temperature
behavior are highly suppressed. Hence this regime corre-
sponds to a quantum Mott insulator, where the properties
of the zero-temperature system are essentially preserved up
to small thermal corrections. Increasing the temperature,
corrections from local activation and from tunneling terms
become progressively comparable until the high tempera-
ture regime, T � Tc, is reached. In this regime, using the
Taylor expansion I0�x� � 1� x2=4 for the Bessel function,
we find

 

�F�qp�

NskBT
� 


1

4D

�
J�n0 � 1�

kBT

�
2 B���

z2
0

: (5)

Note that this expression also applies to the normal phase
in between two Mott-like regions. Here the right-hand side
has a small term / �Jn0=kBT�2 � 1, times a factor com-

parable to the J � 0 result. This means that in this tem-
perature regime, the model with J � 0 alone already gives
a good description of the thermodynamics.

As explained above, the results can be directly applied to
the harmonically trapped case in the LDA. We apply now
the calculation to estimate the temperatures achieved in
current experiments. Typically, a Bose-Einstein conden-
sate is first produced in a magnetic trap with frequency !i,
at an initial temperature Ti. We calculate its entropy using
the Popov approach as exposed in [22] using the local
density approximation and for typical experimental values
!i � 2�� 20 Hz and N � 2� 105 atoms. Then, the
cloud is slowly transferred in the optical lattice of depth
V0. This also changes the frequency !f of the external
harmonic potential according to

 !f �

����������������������
!2
i �

8V0

mw2

s
: (6)

In Eq. (6) the second term comes from the trapping force
due to the Gaussian shape of the laser beams forming the
lattice, with w the lattice laser waist (1=e2 radius), typi-
cally� 150 �m. Assuming that the transfer into the lattice
is adiabatic, both entropy and atom number are conserved.
In the final state, assumed to be deep in the MI regime, the
number density n � 
@f=@� and entropy density s �

@f=@T are calculated from the free energy density f
[23]. Those densities are then integrated over space to fix
the total atom number and entropy, which determines the
final chemical potential and final temperature Tf. We plot
in Fig. 3(a) the result of a self-consistent calculation solv-
ing for Tf for a fixed atom number N � 2� 105. One sees
that for small initial temperature Ti < 0:4Tc0 (condensed
fraction larger than 75%) one ends well within the Mott
region. Only by starting from a rather large thermal frac-
tions does the final temperature exceed 0:2U. Reaching the
quantum insulator regime is more challenging, but still
within reach of current experimental possibilities (Ti <
0:2Tc0).

For this calculation, the role of the trapping potential is
essential. Similar calculations for homogeneous systems
with integer filling would yield a much higher temperature
[10], since near the center of the Mott lobe the entropy is
exponentially suppressed by the finite interaction energy
U. In the trapped case, the entropy in fact concentrates
around the lobe boundaries, where the generation of ex-
citations is easiest. As long as T < T�, the peak value
of the entropy density is smax � kB log�2�. The thickness
�R of the layer where thermal fluctuations are important
can be estimated from m!2

TR0�R� kBT, where R0 ��������������������������
2U=m!2

Td
2

q
is a typical spatial scale for the shell struc-

ture. Since the total entropy and atom number scale, re-
spectively, as S=kB � 4�R2

0�R and N � �4�=3��R0=d�3=2,
we find that in the trapped case, the entropy per particle
rises linearly with temperature, S=NkB � 3kBT=U, instead
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of exponentially (�e
U=kBT) as in the uniform case (see
also [13] for a similar analysis).

An important consequence of Eq. (6) is that the trap
frequency increases significantly when the lattice depth is
raised. This leads to spatial compression (and the forma-
tion of Mott plateaus with higher filling), but also to
adiabatic heating of the cloud, as in a conventional har-
monic trap. In the second calculation, this effect was
investigated [24]. In Fig. 3(b), the result is plotted for a
fixed initial temperature Ti � 0:3Tc0, but varying final trap
frequencies. It is clear that lower and lower temperatures
are achieved when the external trap frequency is reduced.
In particular, one can achieve T < 0:01U if the transfer is
done at constant trap frequency. Experimentally, this could
be realized using blue-detuned lattice beams, or additional
blue-detuned (repulsive) lasers to compensate for the trap-
ping force of the laser beams. Note finally the bump in the
curve, which indicates that the transition from a unity-filled
MI to a two-plateau distribution with either single or
double occupancy.

In conclusion, we have discussed the thermodynamics of
ultracold bosons in optical lattices. We have identified two
characteristic temperatures, T � Tc, above which the SF
regions disappear, and a melting temperature T� � 0:2U.
The thermodynamic function for the Mott phases are cal-
culated explicitly. We have used the results to estimate the

temperature reached in current experiments, and found that
they easily reach the thermal insulator regime T < T�, and
possibly the quantum region T < Tc. We suggest an adia-
batic decompression scheme which potentially allows to
reach much lower temperatures in a system with unity
filling.
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FIG. 3 (color online). Final temperature achieved by adiabati-
cally transferring a condensate into the optical lattice potential
(depth V0 � 20ER). The transfer is done in (a) for a fixed final
trap frequency!f � 2�� 70 Hz varying the initial temperature
Ti, and in (b) for a fixed initial temperature Ti � 0:3Tc0 but
varying the final trap frequency !f. The solid line indicates the
melting temperature T� and dotted and dashed lines indicate the
critical temperature above which superfluidity disappears for
n0 � 1, 2, respectively. For both plots the atom number N �
2� 105 and initial frequency !i � 2�� 20 Hz are fixed.
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