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We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of
valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can
be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show
numerically that this quantity displays all features of the von Neumann entanglement entropy for several
one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence
bond solid state and multiplicative logarithmic corrections for the Néel phase.
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Entanglement is probably the most prominent feature
that allows us to distinguish quantum from classical sys-
tems. While being an inherent ingredient of quantum in-
formation processing, the study of entanglement properties
of quantum many-body states has recently shed new light
on our understanding of condensed matter systems at zero
temperature [1]. Over the past few years, various measures
of entanglement have been used to investigate quantum
phase transitions and states of matter [1–4]. Among them,
the von Neumann entanglement entropy (EE) quantifies
the bipartite entanglement between two parts of a quantum
system [5]. The EE of a quantum state j�i between a part
� and the rest of a system is

 S� � �Tr�� ln��;

where �� � Tr ��j�ih�j is the reduced density matrix of
� obtained by tracing out the rest of the system ��. An
important property of EE is that S� � S ��, and it appears
naturally that S� is only related to the common property of
� and ��, their boundary: general arguments indeed in-
dicate that S� typically scales with the size of the boundary
(area law) [6]. For critical systems, however, logarithmic
corrections can be present. If the critical system is confor-
mal invariant, the amplitude of the logarithmic corrections
is related to the central charge of the corresponding con-
formal field theory (CFT). This has been shown in one
dimension (1D) [3,7] and more recently for some CFT in
two dimensions (2D) [8], in which case the coefficient also
depends on the geometry of �. For systems possessing
topological order, other subleading corrections also depend
on the topology of � [9]. The scaling of the EE with the
size of � therefore contains precious information on the
state of the physical system and can be used, e.g., to detect
criticality. This has been successfully demonstrated in
quantum spin systems [2–4,7,10,11], which are natural
candidates for such studies as they are both of theoretical
and experimental relevance in condensed matter.

While many interesting properties of EE have been
derived exactly for integrable models or systems with

exactly known ground states (GS), the calculation of EE
for general interacting quantum systems is an exacting
task. On the practical side, even numerical simulations
are difficult. Exact diagonalization, limited to small sys-
tems, cannot precisely verify scaling properties and EE is
not accessible to quantum Monte Carlo (QMC) methods.
In 1D, EE can be calculated within the Density Matrix
Renormalization Group method [12] but this technique is
no longer available in higher dimensions. In this Letter, we
introduce another measure of entanglement, called valence
bond entanglement entropy (denoted hereafter SVB), which
is defined for quantum spin systems with SU(2) symmetry.
It can be measured efficiently in all dimensions for non-
frustrated antiferromagnetic (AF) spin systems via QMC
simulations in the valence bond (VB) basis [13]. We show
that SVB, albeit different, captures all features of the
von Neumann EE. In particular, it obeys the same scaling
properties: for 1D quantum spin systems, we recover CFT
predictions. We also investigate the properties of SVB for a
2D Heisenberg model possessing Néel and valence bond
solid phases. Our numerical results show that SVB obeys an
area law for both phases, with the presence of logarithmic
corrections for the Néel phase.

We focus on the AF spin-1=2 Heisenberg Hamiltonian

 H �
X

ij

JijSi � Sj;

which conserves the total spin ST of the system. AF inter-
actions Jij > 0 favor a singlet ST � 0 ground state.

Definition.—It is well known that any singlet state can
be expressed in the VB basis, where spins couple pairwise
in singlets �j "#i � j #"i�=

���
2
p

. The VB basis is overcomplete
(there are more VB coverings than the total number of
singlets). Another basis is the bipartite VB basis [14],
where the system is decomposed into two sets (for instance
different sublattices for a bipartite lattice) such that two
spins forming a singlet necessarily belong to different sets.
This basis is smaller, but still overcomplete. In a given
bipartition of sites and bipartite VB state j�i such as the
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ones in Fig. 1, consider a subsystem � (shaded area in the
figure). We define the valence bond entanglement entropy
of this state as

 SVB
� �j�i� � ln�2�:nc��j�i�;

where nc��j�i� is the number of singlets that cross the
boundary of � (i.e., singlets with one and only one con-
stituting spin within �). The constant ln�2� is used to
match the EE for a unique singlet. In general, the GS of
the Hamiltonian H is not a single VB state. For a linear
combination j�i �

P
iaij�ii with j�ii bipartite VB

states, we define SVB
� �j�i� �

P
iaiS

VB
� �j�ii�=

P
iai. An es-

timate of SVB for the GS ofH can then be obtained by using
the projector QMC method recently proposed by Sandvik
[13], which precisely works in a bipartite VB basis (as soon
asH is not frustrated). In this method, the GS is sampled by
applying Hn stochastically (with n sufficiently large) to an
initial VB state j�0i in order to obtain a projected state
j�ni. In this process, j�ni appears a number of times
proportional to its coefficient in the GS wave function.
The GS estimate of SVB is obtained by Monte Carlo aver-
aging SVB�j�ni� over the projected states obtained in all
Monte Carlo steps.

Bipartite basis and overcompleteness.—At first glance,
SVB seems ill defined as the bipartite VB basis is over-
complete. j�i can indeed be rewritten as a linear combi-
nation of other states for which SVB could be different.
However, SVB turns out to be conserved in any linear
combination between the bipartite VB states. Via an alge-
braic representation of the singlet wave function, it can be
indeed shown that for any linear relation

P
icij�ii � 0

between the bipartite VB states j�ii, we haveP
iciS

VB
� �j�ii� � 0 for all � [15]. Another issue is the

choice of the bipartite basis: in the general case, SVB

does depend on the precise choice of bipartition.
However, if j�i satisfies a Marshall sign criterion [16], a
genuine bipartition where all ai > 0 exists and should be
taken. Not all singlet states satisfy this, but this is the case

for, e.g., the GS of H on bipartite lattices [16]. In practice,
the QMC method is efficient only for bipartite H (when all
ai > 0) and the Marshall condition is not a restriction. This
implies that SVB is a well-defined quantity for any singlet
wave function satisfying the Marshall criterion and that it
can easily be measured (e.g., graphically as in Fig. 1) for
any bipartite VB state.

Entanglement properties.—SVB is in general different
from EE (this can be seen by computing exactly both
quantities on a small system). However, SVB share many
properties with EE: (i) SVB is a subadditive quantity:
SVB

�1[�2
� SVB

�1
� SVB

�2
, (ii) SVB

� � SVB
��

as any singlet cross-
ing the boundary belongs to both subsystems,
(iii) SVB

� � S� if � contains a single site, (iv) SVB
� � S�

for all � when the GS is a single VB state: this is the case
in the thermodynamic limit for the Majumdar-Ghosh spin
chain [17] or for the Random Singlet phase [18] of disor-
dered spin chains where one VB state essentially domi-
nates [4]. Finally, we note that SVB offers a simple
geometrical interpretation of entanglement properties of a
quantum spin state: � is entangled with the rest of the
system �� iff there are singlets in between these two parts.

In the rest of this Letter, we will show that SVB captures
both qualitative and quantitative features of the EE. SVB

can be calculated for all systems that can be simulated with
the VB QMC method, in particular, all spin-1=2 AF
Heisenberg-like models on bipartite lattices in all dimen-
sions, including models with multiple-spin interactions
[19]. We first start with 1D models, where all the character-
istics of the EE are recovered with high precision. We then
present results on entanglement properties of 2D AF
Heisenberg models.

1D systems.—We first consider 1D uniform AF
Heisenberg chains where the GS is known to be critical,
with algebraic decay of spin correlations. For systems of
finite size L with periodic boundary conditions (PBC),
CFT predicts that the EE of a block of spins of size x
scales (for large x) as S�x� � c=3 ln�x0� � S0, where x0 �
L=� sin��x=L� is the conformal distance, the central
charge c � 1, and S0 is a nonuniversal constant [3].
Figure 2(a) displays SVB�x0� for a 1D uniform chain of
size L � 128 and the resulting curve is well fitted by the
form SVB�x0� � ceff=3 ln�x0� � S0 with ceff � 1, in full
agreement with CFT predictions for EE.

Now we turn to uniform AF Heisenberg chains with
open boundary conditions (OBC). For a segment of size
x starting at the open boundary, the CFT prediction for EE
is S�x� � c=6 ln�x0� � S1 with c � 1 and S1 another con-
stant related to S0 [3]. Our results [see Fig. 2(b)] for SVB�x�
for an L � 128 open chain also clearly follow this scaling
form. We also recover the alternating term found for the EE
of open Heisenberg chains [11], as can be seen from the
two distinct odd-even sets of points in Fig. 2(b).

We next consider an alternating Heisenberg spin chain,
where the coupling is 1� � (respectively, 1� �) for all

Ω

Ω

FIG. 1 (color online). A bipartite valence bond state. The
valence bond entanglement entropy of the area � (shaded
square) is equal to the number of singlets shared between �
and the rest of the system �� (here 8), times ln�2�.
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even (respectively, odd) bonds. This system is noncritical
with a finite correlation length for all � � 0 and the EE
S�x� of a segment of size x saturates to a finite value for
large enough x [2,3]. We calculate SVB�x� for � � 1=3 and
a system of size L � 64 [see Fig. 2(c)]. There are two types
of inequivalent blocks x depending on whether the block
starts with a strong bond 1� � or a weak one 1� �. We
denote the corresponding entropies by SVB

s �x� and SVB
w �x�

and by symmetry SVB
s �x� � SVB

w �x� for all odd x. Both
entropies show an alternating pattern, a consequence of
the explicit dimerization. This is in contrast with the aver-
age entropy SVB�x� � 1=2�SVB

s �x� � S
VB
w �x�	 which is a

smooth function of x. All entropies clearly display a satu-
ration at large x. These features also appear in the study of
EE for the same model.

We conclude this section by showing results on the
disordered AF Heisenberg chain. Here all couplings are
random variables uniformly distributed in �0; 1	. This sys-
tem is in the random singlet phase [18], a gapless critical
phase where spins are coupled pairwise in singlets at all
length scales. As understood from a real space renormal-
ization group (RSRG) procedure [20], the physics is domi-
nated by a single VB covering in the thermodynamic limit
[18]. Calculating the disorder average EE S�x�with RSRG,
Refael and Moore [4] obtained the scaling form S�x� �
�=3 ln�x� � S2 with � � ln�2�, a result confirmed by nu-
merical simulations of random spin chains [21]. We simu-
lated disordered chains of sizes up to L � 256 starting

from an initial VB state j�0i obtained applying the
RSRG decimation scheme, which ensured a faster conver-
gence with the projection index n. Figure 2(d) presents our
numerical results for SVB�x�, and the data (for 10 � x �
L=2) are well fitted by the previous functional form with a
prefactor �eff � 0:6�1�, in agreement with the RSRG pre-
diction for the average EE. Actually, as the average in the
thermodynamic limit is dominated by a single VB state, we
expect SVB and �S to coincide. This is, however, difficult to
check numerically because of the finite L and the small
number of random samples used in the simulations. This
also accounts for the small discrepancy in our numerical
estimate of �eff with respect to the RSRG prediction [note
that a fit forcing �eff � ln�2� is also of good quality as seen
in Fig. 2(d)].

2D systems.—The previous section showed the precise
agreement between the VB entanglement entropy SVB and
the true EE S in both quantitative and qualitative respects
for 1D systems. This gives us confidence that SVB is a good
observable to quantify entanglement also in larger dimen-
sions d. This is an important point as the VB QMC simu-
lations (and therefore the calculation of SVB) can easily be
extended to higher d. Note at this stage that only a few
results are available on entanglement properties in high d:
exact results have been derived for free fermions [22,23],
bosons [6,23,24], and some exactly solvable spin models
[25], but EE has never been calculated numerically for
large d > 1 systems to the best of our knowledge [26].
At the present time, the connection between the area law
and the precise nature of the ground state (range of corre-
lations, presence of a gap) is not fully understood for d > 1
(see discussions in Ref. [24]).

We now investigate 2D Heisenberg systems and calcu-
late SVB for a square subsystem � of linear size x (such as
the one in Fig. 1), for L
 L samples with PBC up to L �
64. In particular, we consider a model of coupled dimers in
two dimensions depicted in the inset of Fig. 3, where
dimers (with intradimer exchange J � 1) are coupled
with an interdimer exchange �. The physics of this model
is well understood [27]: at low �, the system is in a
dimerized valence bond solid (VBS) phase, whereas the
case � � 1 corresponds to the Néel phase of the isotropic
2D Heisenberg model. The system undergoes a quantum
phase transition between these two states at �c �
0:52337�3� [27]. Figure 3(a) displays the average valence
bond entanglement entropy divided by the linear size
SVB�x�=x for the point � � 0:2 located in the VBS phase.
All the curves for different L saturate for large enough x,
indicating that the valence bond entanglement entropy
obeys an area law SVB�x� / x, as expected for a gapped
phase. For the isotropic case � � 1 located in the Néel
phase, SVB�x�=x does not saturate, and the curve is actually
well fitted by a log form, as exemplified by the log-linear
scale of Fig. 3(b). Our numerical results therefore indicate
that the valence bond entanglement entropy scales as
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FIG. 2 (color online). SVB versus distance for 1D AF
Heisenberg quantum spin systems: (a) chain with PBC,
(b) chain with OBC, (c) alternating chain (� � 1=3) with
PBC, (d) random AF chain with PBC. In (a), (b), and (d), scale
is log-linear. For (a) and (b), x0 � L=� sin��x=L� is the confor-
mal distance. Solid lines are scaling forms for EE predicted by
CFT [(a) and (b)] and RSRG [(d)]. Simulation parameters are the
following: (a) n � 70L, (b) n � 60L, (c) n � 30L, (d) n � 10L
and 500 disorder samples.
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SVB�x� / x ln�x� in the Néel phase. Multiplicative logarith-
mic corrections have also been found for the EE of
fermions [22,23]. They are tentatively attributed here to
the Goldstone modes present in the Néel phase, which
also make for the algebraic transverse spin correlations.
Scaling of SVB at the critical point �c is currently under
investigation.

To summarize, we have proposed the valence bond
entanglement entropy as a new measure of entanglement
for SU(2) quantum spin systems. SVB offers a powerful tool
to quantitatively investigate the deep connection between
VB physics and the amount of entanglement present in spin
systems, although its precise connection to EE needs fur-
ther studies. Several questions then arise, pointing, for
instance, towards d � 2 exotic phases (such as resonating
valence bond spin liquids) and quantum critical points (as
in Ref. [19]), which should hopefully exhibit striking
valence bond entanglement features. Finally, in the ab-
sence of a Marshall sign rule (as for some frustrated
systems) where SVB depends on the choice of a bipartite
basis, the usefulness of SVB has to be clarified.
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FIG. 3 (color online). SVB=x versus distance x for 2D quantum
spin systems: (a) 2D AF dimerized Heisenberg model (� � 0:2),
(b) 2D AF Heisenberg model (� � 1) (log-linear scale). Solid
line is a fit to a logarithmic divergence form. Inset: Illustration of
the coupled-dimer model. Simulation parameters are n � 30L2

for L � 32, n � 20L2 for L > 32.
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