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Rotating Vortex Dipoles in Ferromagnets
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Vortex-antivortex pairs are spontaneously created in magnetic elements. In the case of opposite vortex
polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find
theoretically and confirm numerically its energy as a function of angular momentum and the associated
rotation frequencies. The annihilation process of the pair changes the topological charge while the energy
is monotonically decreasing. The change of topological charge affects the dynamics profoundly. We
finally discuss the implications of our results for Bloch point dynamics.
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Magnetic vortices have a nontrivial topology which is
responsible for their stability and for the fact that they are
central in theoretical studies for the micromagnetic de-
scription of two-dimensional (2D) magnets and thin films
[1]. Similar topological structures arise in many physical
systems, as in quantum field theory [2]. However, experi-
mental evidence for their existence and properties had been
rare. The situation has dramatically changed in the last
years. It was realized that a disk-shaped mesoscopic mag-
netic element provides an excellent geometry for a mag-
netic vortex configuration. In a few words, the interest in
the vortex stems from the fact that this is a nontrivial
magnetic state which can, nevertheless, be spontaneously
created in magnetic elements [3].

This leads naturally to the question of whether there are
any further nontrivial states which would play an important
role in magnetic elements [4,5]. An answer comes from a
somewhat unlikely direction. Recent experiments have
shown a peculiar dynamical behavior of vortices and mag-
netic domain walls when these are probed by external
fields. Vortices may switch their polarity under the influ-
ence of a very weak external field of the order of a few mT
[6,7] or by passing an electrical current in a nanodisk [8].
Since the polarity of the vortex contributes to its topologi-
cal structure, the switching process clearly implies a dis-
continuous change of the magnetic configuration. This is
certainly a surprise since the external field is only very
weak. The key to the phenomenon is the appearance of
vortex pairs which are spontaneously created in the vicinity
of existing vortices [7,9]. The creation of topological ex-
citations under alternating external fields has been antici-
pated by a collective coordinate study [10].

We will study vortex-antivortex (VA) pairs and argue
that these are nontrivial magnetic states which play an
important role in dynamical phenomena in magnetic ele-
ments. They are localized configurations—unlike a single
vortex. Specifically, we will study a VA pair where the
vortex and the antivortex have opposite polarities. This
behaves as a rotating vortex dipole, and its topology and
its dynamics are radically different than a pair with same
polarities [11]. Despite its nontrivial topology it can be
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destroyed by a quasicontinuous process. This opens the
possibility for switching between topologically different
states in ferromagnets. On account of a direct link between
topology and dynamics in magnets [12,13], a change of the
topological magnetization structure leads to a dramatic
change of the magnetization dynamics observed in ele-
ments as the VA pair is created or annihilated [7,8].

A ferromagnet is characterized by the magnetization
vector m = (m,, m, m,) which is a function of position
and time m = m(r, t). It has a constant length which we
choose unity for convenience: m? = 1. Its dynamics is
given by the Landau-Lifshitz equation (LLE)

%?=mxﬁ f=Am—-ome, ()
where €, is the unit vector in the z magnetization direction.
The vector m is normalized to the saturation magnetization

M. Distances are measured in exchange length units €., =

JA/(2M?), where A is the exchange constant. The unit of
time is 7o = 1/(47myM,), where 7y is the gyromagnetic
ratio. Typical values are €., ~ 5 nm and 7¢ ~ 10 ps.

In the form (1) the LLE has only one free parameter
which is the quality factor Q = K/(2M?), where K is the
anisotropy constant. We typically use Q = 1 in the follow-
ing, which corresponds to easy-plane anisotropy, unless
stated otherwise. Equation (1) is associated with the energy
functional E = E, + E,, where

E,= % ](Vm)zdxdy, E,= % j(mz)zdxdy, (2)
where we consider, for simplicity, a 2D infinite system.
Energy is measured in units of 477M?2€2,. The magneto-
crystalline anisotropy E, models an intrinsic interaction in
materials, but it can also serve as a simplified model for the
magnetostatic term in thin films. We defer discussion of a
magnetostatic term until we derive our main results.

A magnetic vortex is an axially symmetric solution of

Eq. (1) of the form
m, = Acos®(p), m,+im,= sin®(p)eS¢=%0)  (3)

where (p, ¢) are polar coordinates, S is an integer called
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the winding number, A = *1 is the vortex polarity, and ¢
is a constant. The magnetization angle ®(p = 0) = 0 at
the vortex center, while @(p — o) = 77/2 away from it.
The winding number S is a topological invariant. The usual
case for a vortex observed in experiments is S = 1, while
in the case § = —1 it is termed an antivortex.

A further topological invariant is defined by [2]

1
N Eﬁfndxczy’ n= Eﬂv(avm X al‘«m).m’ S

1
2
where €, is the totally antisymmetric tensor (u, v = 1,
2), and n is the topological density. For a vortex of the form
(3) we have N = —1/28A.

A convenient formulation for the description of vortices
but also multivortex states is obtained through the stereo-
graphic variable
my +im,

1+ m,

A simple configuration for a two-vortex solution is written
as

0= 5)

Q- i{ + a’
{—a
where a is a constant which will be considered real for
simplicity. It gives the distance between vortices as well as
the size of each vortex core. At { = a we have a vortex of
the form (3) with S = 1 and A = —1, while at { = —a we
have an antivortex (S = —1) with opposite polarity A = 1.
At large distances |{| — o0 we have  — i. In other
words, we have chosen the boundary condition

m =1(0,1,0) as [{|— oo. @)

Figure 1 shows examples of VA pairs.

The form (6) will be used as an ansatz for a VA pair with
opposite polarities. It belongs to a family of exact static
solutions of the LLE for an isotropic 2D ferromagnet (Q =
0) [2,14]. Its energy is E, = 4 for every a (due to the
scale invariance of the exchange interaction), and its topo-
logical charge is N = 1. We have n(x, y) = n(—x, y), and
thus precisely half the topological charge comes from the
one half plane (x > 0) and the second half comes from the
second half plane (x < 0). The vortex and the antivortex
are not overlapping irrespectively of the distance between
them.

In the presence of easy-plane anisotropy (Q > 0) the
vortex profile is modified. Its size is set to R, ~ 1//Q, or

R, ~ \/A/K in the usual units. Otherwise, the comments
on the topological density and charge of the VA pair given
in the previous paragraph remain valid.

A more detailed study of the VA pair requires informa-
tion on its dynamics. For this purpose we write the con-
served linear momentum associated with the LLE (1) [12]
P, = — [yndxdy, P, = [xndxdy, which gives a mea-
sure of the position of the VA pair. Since the vortex and
the antivortex have a mirror image topological density
distribution we find (P,, P,) = (0, 0). The important result

{=x+iy, {=x—iy, (6)

o

o
P

S S

o

FIG. 1 (color online). VA pairs with opposite polarities. The
vectors show (m,, m,); m, is color-coded. (a) Relatively large
distance between vortices (d = 2.7). The pair rotates with w =
0.06 (¢ = 68). (b) Small distance between vortices (d = 1.85),
corresponding to w = 0.17 (€ = 15).

is that the mean position is conserved in time and thus the
VA pair is spontaneously pinned at the position where it is
created.

Further information is obtained by considering the an-
gular momentum of the system [12]

€= %/pzndxdy, (8)

which is also written with the aid of the topological density
n, and it is conserved within model (1). For a VA pair € is
clearly nonzero (the integrand is positive definite), and it
gives a measure of its size. The distance d between the
vortex and the antivortex can be defined from

<c_1'>2 _ [p*ndxdy ¢ €

2
- Yt p_2y
2 [ndxdy  2aN 2w =d T ©

where we assume that the VA is centered at the origin. A
nonzero angular momentum ¢ indicates that the VA should
be a rotating object.

The rotational dynamics is fully confirmed by numerical
simulations of the LLE (1). However, the rotating pair is
apparently unstable and short lived due to radiation of en-
ergy in analogy to a rotating electric dipole. The conserva-
tive system will be studied further here. The results will
then be used to understand the full dynamics of a more
realistic system including mechanisms for energy
dissipation.

For a simpler numerical investigation we assume a
steady state of a rotating vortex pair. This is a stationary
point of the extended energy functional F = E — w¢,
where w is the angular frequency of rotation measured in
units of 47yM,. A standard scaling argument [15] readily
gives, for a stationary state, the virial relation

E, = wl. (10)

A useful result is now obtained if we assume well
separated vortex and antivortex where each of them be-
haves as an isolated one. The anisotropy energy for an
isolated static vortex is 7r/2 [16]. Substituting this in
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Eq. (10) we obtain

w =

2
=7 an

~|3

where Eq. (9) was used in the second equality. The limit of
large vortex separation was studied in Ref. [10] and the
angular frequency (11) was obtained. The rotation fre-
quency goes to zero in the limit of large vortex separation.
As a concrete example, suppose that d = 10{,, apart and
Q =1, to obtain w = 0.01, or w ~ 10° Hz.

We now turn to the case of a vortex and antivortex
forming a small pair. When the size of the VA pair is
smaller than the length scale 1/./Q introduced by the
anisotropy energy, the latter is negligible. Then (6) is exact
in the area of the vortex cores. Away from the vortex cores,
we will adopt the approximation that the anisotropy will
prevail and it will enforce the vacuum (7). In the limit a <
1 wehave E = E, = 47 [17] and N' = 1 due to the con-
tribution of the origin which becomes a singular point. The
magnetic configuration becomes then fully aligned to the y
axis, except for the origin, as a — 0. Then, one can elimi-
nate the singular point and assume a fully aligned state. In
doing so, one eliminates the topological complexity of the
system and changes the topological charge /N by unity.
Needless to say, such singular points may not exist in
magnetic materials because the lattice spacing in the solid
provides a natural length cutoff. The finite lattice spacing is
apparently responsible for the annihilation of vanishingly
small VA pairs and the subsequent surprising change of the
topological charge of magnetic configurations in experi-
ments [6-8].

One usually expects that a topologically nontrivial state
(N # 0) cannot be deformed continuously to the ground
state of the system which has topological charge zero. In
addition, the two states are separated by an infinitely high
energy barrier. However, in the case of the VA pair studied
here, although the former argument is correct, no energy
barrier is encountered in the process. This is an unusual
property but it is completely explained by the scale invari-
ance of the exchange energy in two dimensions [2].

We go on to find numerically VA pairs in steady rotation.
We use stretched coordinates and simulate the infinite
system. We go to a rotating reference frame, which
amounts to substituting f — f — w(8€/6m) in Eq. (1).
We use a relaxation algorithm [i.e., add dissipation to the
LLE and effectively use Eq. (14)]. We feed the algorithm
with the ansatz (6) as an initial condition, and it relaxes to a
roughly steady state. Our algorithm cannot give exact
solutions of the equation; however, we are able to calculate
good approximations for the energy and the angular mo-
mentum of the rotating state for various values of the
rotation frequency w. Figure 1 shows rotating VA-pair
solutions. Figure 2 shows the results for the energy as a
function of the angular momentum for Q = 1. We have
checked that the virial relation (10) is approximately sat-
isfied for our numerical solutions.

We can find the rotation frequency of a vanishingly
small VA pair by substituting (6) in (2) and (8) to obtain

o, @ p?
E,= Ef = Q/Sm@”ﬂdp): (12)

where S denotes a circular domain which includes the
vortex cores. Substituting (12) in the virial relation (10)
we find w = Q/2. A more rigorous calculation would
require an asymptotic analysis of the LLE. On the side of
small € the results in Fig. 2 are consistent with the theo-
retical value w(f — 0) = 1/2 (at Q = 1).

The frequency satisfies w = dE/d¢ and it is thus given
by the slope of the curve. For large € we can substitute
Eq. (11) for w(€) and obtain

E = wIn({/€,) + 4, (13)

where the constant €, cannot be fixed by the present
calculation. The log term in the energy can be obtained
by considering the exchange energy interaction between
the vortices.

We now turn to discuss a more realistic system where
dissipation is present. The LLE including Gilbert damping
reads

aa—’:l=m><f—am><(m><f), (14)
where « is the dissipation constant. We typically use in
simulations enough dissipation which dominates the radia-
tion effect of the rotating dipole. An initial state (6) is
iterated in time using, typically, & ~ 0.1 and a ~ 5. In the
initial phase of the simulation the vortex and the antivortex
quickly adjust to the core size R,.

The dynamical behavior of a VA pair can be summarized
as follows. A VA pair which will be initially created will
shrink, due to dissipation, as it rotates. Its energy will
follow approximately the curve of Fig. 2 as its size and
its angular momentum decrease. At vanishing size a sin-
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FIG. 2. The energy E of a rotating VA pair as a function of its
angular momentum € (for @ = 1). The circles indicate numeri-
cal results (the dashed line is a guide to the eye). They can be
fitted by E = 7 In(€/4.5) + 44 for large €, while E=0.5¢ + 47
for £ — 0. The slope of the curve gives the rotation frequency.
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gular point, as the one discussed earlier, would be created.
This would practically disappear due to the discreteness of
the solid.

The addition of the magnetostatic field in Eq. (14) is
necessary in order to make the model relevant for experi-
ments in magnets. The qualitative picture for the dynamics
of a VA pair will not be affected since our analysis does not
depend on the exact form of the field f in Eq. (1). The
magnetostatic field will, however, modify the profile of the
pair. Unlike exchange and anisotropy, the magnetostatic
energy is sensitive to rotations of the spin vector. It has
been pointed out in Ref. [10] that this symmetry breaking is
responsible for the resonant excitation of vortex pairs by
alternating external fields.

For an ultrathin film, we suppose no variation of m
across the film thickness, and we assume that the magneto-
static interaction would behave as a single-ion easy-plane
anisotropy (as for the ground state in thin films [18] ). This
amounts to the substitution Q — Q + 1 in Eq. (1). The
above analysis is then valid for an effective anisotropy
strength Q + 1. In particular, a change in the topological
charge occurs through a 2D singular point (no Bloch point
need be formed). In the special case of a significant easy-
axis magnetocrystalline anisotropy Q = —1 we effectively
recover the isotropic model. Consequently, a VA pair
which is somehow created in the magnet would be static.
More realistically (experimentally) we expect that it would
be slowly moving.

Numerical simulations [9,19] show that, in a film of
finite thickness, a singular point is created first at one of
the surfaces of the film. The VA pair vanishes by formation
and annihilation of the singular point at successive film
levels, until the vacuum state is reached throughout the
film. A curve similar to that in Fig. 2 gives now the linear
energy density across the film thickness. The energy re-
leased when the VA pair is annihilated is 4777 (¢ is the film
thickness) and it is emitted through spin waves [9,17].

At the stage when the singular point has been formed
and annihilated, say, near the top film surface, while a VA
pair still exists in the lower film levels, we have a Bloch
point (BP) in the film [20]. This lies at the interface
between the levels where the VA has been annihilated
and the levels where this has a finite size, at the singular
point. This is a somewhat simplified realization of the BP
studied in Ref. [21]. Its energy is approximately 47 times
the length of the vortex or the antivortex line. More im-
portant is the unusual fact that during creation and annihi-
lation of the BP one does not have to overcome any energy
barrier (unlike the case of Ref. [22]), essentially for the
same reasons explained above in connection to the singular
point.

Our discussion clearly suggests a connection between
VA-pair dynamics and the dynamics of a BP. In particular,
a rotating motion of the magnetization appears inherent in
a BP configuration. This effect is not present in the dis-
sipative dynamics of a BP discussed in the literature [23].

The dynamics observed in both experiments in
Refs. [7,8] includes three vortices. Our analysis applies
to the part of the process when the vortex and antivortex
with opposite polarities are relatively close together. The
presence of a third vortex does not modify our main argu-
ments. The full three-vortex system has a nonvanishing
topological charge and thus they form a rotating object
which is spontaneously pinned in the magnet. A study of
this configuration could be done following the methods of
this Letter.
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