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We study RKKY interactions between local magnetic moments for both doped and undoped graphene.
In the former case interactions for moments located on definite sublattices fall off as 1=R2, whereas for
those placed at interstitial sites they decay as 1=R3. The interactions are primarily (anti)ferromagnetic for
moments on (opposite) equivalent sublattices, suggesting that at low temperature dilute magnetic
moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. In
the undoped case we find no net magnetic moment in the ground state, and demonstrate numerically this
effect for ribbons, suggesting the possibility of an unusual spin-transfer device.
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Introduction.—Graphene, a two-dimensional honey-
comb network of carbon atoms, has recently become a
subject of intense interest. The development of practical
fabrication techniques for single graphene sheets [1] has
allowed experimental study of this system, confirming its
two-dimensional Dirac spectrum in quantum Hall studies
and revealing many unique properties [2,3]. In this work
we study response functions of graphene in the noninter-
acting limit, focusing on its consequences for magnetic
moments which may be embedded in the system (RKKY
interactions). A number of studies of magnetic moments in
graphene have identified a tendency toward antiferromag-
netic [4–7] or ferromagnetic [8] correlations. These corre-
lations are usually attributed to exchange interactions or
other many-body effects. In what follows, we demonstrate
that such effects arise even for noninteracting electrons in
graphene, and that they are a result of the chirality of the
electron states for doped graphene [9], and of the vanishing
density of states at the Fermi energy for undoped systems.
A noninteracting model of graphene may be justified by its
small, density-independent effective rs parameter, as well
as studies suggesting that Fermi liquid theory should work
well in physically realizable situations [10–13].

Exchange coupling between local magnetic moments
and conduction electrons in metals leads to an effective
(RKKY) coupling [14] among the local moments which
oscillates with distance with wave vector 2kF (kF � Fermi
wave vector), and an amplitude that decays as 1=R2 in two
dimensions, with R the separation between impurities. For
doped graphene, we shall demonstrate similar behavior,
with an important qualitative difference: the sign of the
interaction depends on whether the two local moments
couple to the honeycomb network on sites of the same
sublattice or different ones, and when summed over both
sublattices at a fixed distance, the 1=R2 contribution to the
RKKY coupling is canceled, leaving behind a residue that
falls off as 1=R3. Interestingly, analogous studies of the
linear response to perturbations that do not distinguish

between A and B sublattice sites also result in a 1=R3

behavior [8,15,16]. We will show that the 1=R3 behav-
ior—and the absence of 1=R2 behavior in density response
functions—is a direct result of the chiral nature of elec-
trons in graphene.

For undoped graphene (kF ! 0) we find the RKKY
coupling behaves as �1=R3 at large distances, again with
equal magnitudes, that are ferromagnetic when the impu-
rities are on the same sublattice, and antiferromagnetic
when on opposite sublattices. This behavior is also con-
nected to that of the full density response, and reflects the
vanishing density of states of graphene at the Fermi points.
This behavior also dominates in doped graphene for dis-
tances R & 1=kF where the coupling is greatest in magni-
tude. Because of this we expect at zero temperature the
system will tend to order, with moments oriented in oppo-
site directions for the two sublattices. The state is thus
analogous to an ordered state of a dilute antiferromagnet.
Analogous behavior has been noted in zigzag graphene
ribbons [5] with equal and opposite spin accumulating near
the edges, on opposite sublattices. While this effect has
been attributed to complicated exchange interactions [5],
we present results of simple tight-binding calculations
demonstrating that this physics occurs even without inter-
actions, and is a consequence of the unusual nature of the
single-particle states in graphene.

Hamiltonian, wave function, and RKKY interaction.—
The simplest description of graphene is a tight-binding
model representing electrons in �z orbitals of the carbon
atoms, which can hop with matrix element t between
nearest neighbor sites, which are always on opposite sub-
lattices for the honeycomb lattice. The energy states of
such a model may be straightforwardly computed [9], and
one finds that the spectrum possesses particle-hole sym-
metry, with a zero energy surface consisting of six points at
corners of the Brillouin zone, only 2 of which are inequi-
valent due to symmetry. When undoped the Fermi surface
of graphene passes through these points, which are denoted
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by K and K0. At long wavelengths, the wave functions near
each of these points can be described by two component
spinor envelope functions ��A�0��r�; �B�0��r��, the entries of
which are proportional to the amplitude for the electron to
be present at unit cell located at r on sublattices A orB. The
wave functions may be regarded as possessing a quantum
number � � K;K0 denoting which Dirac point they reside
near. The Hamiltonian near such a point is approximately

 H�0� � �vF
0 �i@x 	 @y

�i@x � @y 0

� �

with the upper (lower) sign denoting the Hamiltonian for
states near the K (K0) point, and vF �

���
3
p
t=2. These

Hamiltonians have eigenenergies �k;s � svFjkj, and asso-
ciated eigenstates  �0�k;s � �e

	i�k ;�s�, where again the
upper (lower) sign denotes the solution for the K (K0)
valley, s � �1, and �k � arctan�kx=ky�.

Consider local spin degrees of freedom S��R1� and
S��R2� weakly coupled to electrons in graphene by an
exchange interaction J at positions at or near sites in
sublattices � and �. In perturbation theory [17,18] the
induced interaction between the spins has the form H�� �

J�;�RKKYS� 
 S�, where J�;�RKKY � �J
2�0

�;��R1 �R2�, and

�0
�;� is the Fourier transform of

 �0
�;��q� � �gv

1

N

X
s;s0;k

f��k;s� � f��k�q;s0 �

�k;s � �k�q;s0
F�;�s;s0 �k;q�:

(1)

Here gv � 2 is the degeneracy due to the valley index,N is
the number of unit cells in the system, f is the Fermi
function, and F�;�s;s0 �k;q� is a factor arising from the matrix
element of the spinors associated with the single-particle
states, which in general depend on the angles �k and �k�q

[19].
Site-symmetric moments.—When the local moments are

located at the centers of the hexagons in the honeycomb
network, it becomes appropriate to replace F�;�s;s0 Eq. (1)
with a sum, Fs;s0 �

P
�;�F

�;�
s;s0 �

1
2 �1� ss

0 cos��k�q�,
where ��k�q is the angle formed by the vectors k and k�
q. The resulting �0 is then identical to the standard density-
density response function, which may be computed
straightforwardly [16,20,21], with a result that may be
expressed conveniently in the form �0�q;�� � �0�q;� �
0� � ��0�q;�� with � � vFkF the chemical potential
(assumed positive), �0�q;� � 0� � gvq

16vF
, and

 ��0�q;�� �
gvkF
2�vF

�
1�

�
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��2kF � q� �
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�
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2

������������������������
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�
2kF
q

�
2

s
�

1

2

q
2kF

arcsin
2kF
q

�
��q� 2kF�: (2)

Several comments are in order. (i) In spite of the pres-
ence of step functions � in this expression, its first deriva-
tive with respect to q is continuous at q � 2kF, in sharp
contrast with the situation for a normal two-dimensional
electron gas (2DEG). The discontinuity in the 2DEG arises
from a singularity in the integrand in Eq. (1) (with F � 1
for a 2DEG) when �k � �k�q and q � 2kF—the Kohn
anomaly [22]. For graphene, Fs;s0 vanishes precisely where
the singularity would otherwise occur, removing the dis-
continuity in the slope. This behavior is a direct result of
the chirality of electrons in graphene and the resulting
absence of backscattering that it entails [9]. (ii) For un-
doped graphene the response vanishes at q � 0. We can
understand this as follows. The q � 0 response may be
understood as arising from a shift in the chemical potential,
plus more generally a part coming from changes in the
single-particle wave functions. However, the total charge
of the system cannot shift due to changes in the single-
particle wave functions, in accordance with the Friedel sum
rule [23]. Moreover, in undoped graphene the response
from a differential chemical potential shift vanishes be-
cause the density of states at the Fermi energy is zero. Thus
there can be no net q � 0 response. (iii) The vanishing of
�0 at q � 0 means that the total population of either spin
flavor cannot be changed by a perturbation in undoped

graphene, even if the perturbation is different for the two
spin directions—as would be the case for a (possibly
inhomogeneous) Zeeman coupling. This result is consis-
tent with the observation that graphene ribbons can have an
inhomogeneous spin configuration but net spin zero [5].

Site-specific moments.—Local moments can in many
circumstances be more strongly coupled to a specific site
in the honeycomb network, which lies on a definite sub-
lattice. One can also consider situations in which the mo-
ment is a substitutional impurity, or is an induced moment
due to a vacancy in the lattice [7,8]. In such cases the
coupling among moments has the form J�;�RKKY / �

0
�;�, and

�0
�;� is given by Eq. (1) with FA;As;s0 �k;q� �

1
4 for impurities

on the same sublattice, and FA;Bs;s0 �k;q� �
1
4 ss

0ei��k�q for
impurities on opposite sublattices. We first consider the
case of impurities on the same sublattice. Decomposing
the response function as �0

A;A�q� � �0
A;A�q;� � 0��

��0
A;A�q;��, the first term, corresponding to undoped gra-

phene, may be shown to have the form

 �0
A;A�q;� � 0� �

1

2

gv
4�vF

�
��

�
8
q
�

(3)

where �� �=a0 is the momentum cutoff. The contribu-
tion due to doping may also be evaluated, and has the form

 ��0
A;A�q;�� �

gv
64vF

q��2kF � q� �
gvq

32�vF

�
arcsin

�
2kF
q

�
�

2kF
q

�����������������
1�

4k2
F

q2

s �
��q� 2kF� (4)
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In Eq. (4) the derivative is discontinuous at q � 2kF: the
chiral overlap factor FAA does not vanish in this case, and
one obtains a Kohn anomaly analogous to that of the
standard 2DEG. This has important consequences for
RKKY coupling in real space, which is proportional to
the Fourier transform of Eqs. (3) and (4). For the first of
these we find

 JAARKKY�R;� � 0� / ���R;� � 0� � �
�
32

gv
vF

1

R3 (5)

so that in undoped graphene, moments are ferromagneti-
cally coupled when they are on the same sublattice. The
correction due to doping, �JAARKKY�R;�� / ���0

A;A�R;��
can be computed in the asymptotic limit (kFR� 1), with
the result

 ��0
A;A�R;�� ’

gvkF
4vFR2 sin�2kFR� � gv

cos�2kFR� � 1

8vFR3 :

(6)

A comparison with numerical integration shows that this
asymptotic expression works quite well for kFR > 0:35.
The oscillating term proportional to 1=R2 is present be-
cause the Kohn anomaly is not suppressed in the relevant
response function. A similar behavior was found recently
for Friedel oscillations, where the way in which the per-
turbation breaks the lattice symmetry determines whether
they fall off as 1=R2 or 1=R3 [15]. While this 1=R2 behav-
ior is similar to that of the standard 2DEG, it nevertheless
differs from the 2DEG in having a density dependent
amplitude [18].

For moments on opposite sublattices, we can easily
compute the coupling by noting that FA;As;s0 � F

A;B
s;s0 �

Fs;s0=2. It immediately follows that

 �0
A;B�q;�� � ��

0
A;A�q;�� �

1
2��

0�q;��: (7)

We thus see that the tendency towards ferromagnetic cou-
pling for moments within a distance R & 1=kF for impu-
rities on the same sublattice translates into an antiferro-
magnetic coupling for impurities on opposite sublattices
[24]. Qualitatively this may be understood as a result of a
cancellation of Kohn anomalies in �0

A;A and �0
A;B, which

must occur since no such anomaly is present in ��0 as
discussed above. Moreover because the coupling is stron-
gest for short distances, we expect this to result in a
tendency towards antiferromagnetic order at low tempera-
tures when the moment density ni satisfies kF=

��������
�ni
p

& 1.
The low temperature state is analogous to that of a dilute
antiferromagnet since the moment locations are random in
such models. A special feature of the graphene system,
however, is that the coupling among the moments can be
manipulated via the electron density, which in turn may be
controlled by a gate [1]. In particular, added electrons
shorten the distance over which the RKKY coupling has
a well-defined (i.e., nonoscillating) sign, so that the anti-
ferromagnetic order may be suppressed via doping. It is

interesting to note that analogous, albeit simpler, behavior
(e.g., ferromagnetic rather than antiferromagnetic order-
ing) is believed to occur in dilute magnetic semiconductors
[25,26]. The physics associated with the chirality of the
single-particle states, as well as the vanishing density of
states at the Fermi energy when undoped, give graphene a
richer phenomenology.

Numerical investigations.—To test these results we have
performed numerical tight-binding calculations on gra-
phene ribbons. We first consider an infinite ribbon with
zigzag edges,N � 80 atoms wide along an armchair chain,
with a Zeeman coupling (Ez � t=10) along an (infinite)
line of sites all on one sublattice (A) near the center of the
ribbon. This type of perturbation models a line of frozen
spins. Figure 1 shows the results for the induced spin
density, with A sites shown in red and B sites in black.
The main panel is essentially identical for both the doped
and undoped cases. In the doped case one can see oscil-
lations of wave vector 2kF falling off slowly with distance,
which are out-of-phase for the two sublattices. Moreover,
the total induced spin vanishes for the undoped case. These
properties are in precise agreement with our expectation
that summing over sublattices leads to a cancellation of the
RKKY oscillations due to the absence of backscattering in
graphene, and a vanishing net response as q! 0 due to the
vanishing density of states for undoped graphene.

We also find an interesting result when the perturbation
is applied at one of the edges (Fig. 2). Applying a Zeeman
field at a single zigzag edge in undoped graphene induces
spin in both edges, but in such a way that there is no
induced total spin for undoped graphene. This is interesting
because the spin state is communicated across the width of
the sample even though there is no spin polarization in the
bulk. Thus the tendency for undoped graphene to compen-
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FIG. 1 (color online). Spin density as a function of position (in
units of a0 � distance between nearest atoms of same sublattice)
for a Zeeman field Ez � t=10 along line of sites in sublattice A
for a ribbon geometry. The main panel is essentially identical for
doped and undoped graphene. Inset: Blowup for undoped gra-
phene illustrating RKKY oscillations.
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sate an induced local spin due to a local Zeeman field
survives the inclusion of edge effects, which in the zigzag
case induces a nonvanishing density of states at zero en-
ergy [4] for sufficiently wide ribbons [27]. We find results
similar to those of Fig. 2 for doped graphene zigzag
ribbons with edge Zeeman fields, with two differences:
there are 2kF oscillations in the spin density of small
magnitude as one moves in from the edge, and a small
net spin is induced. We note that analogous spin configu-
rations have been predicted to spontaneously form in rib-
bons when exchange interactions are important [5]; our
calculations demonstrate that such interactions are not
needed to induce the tendency towards spin compensation.
It is interesting to speculate that this effect might be
utilized as a spin-transfer device.

In summary, we have studied RKKY interactions among
magnetic moments in graphene using a linear response
approach. Our calculations show a strong qualitative dif-
ference between moments that couple symmetrically to the
sublattices of the graphene honeycomb network and ones
that couple to specific sublattices, with the latter showing
more pronounced effects. Doped graphene, in particular,
supports oscillations due to the Kohn anomaly only in the
latter case. The sum of intra- and intersublattice responses
was shown to vanish in the long wavelength limit in
undoped graphene, leading to RKKY interactions of oppo-
site sign for the two sublattices. Within mean-field theory,
impurities coupled via these interactions should form a low
temperature state analogous to that of a dilute antiferro-

magnet. Tight-binding calculations confirm the presence of
the 2kF oscillations for doped graphene, and the tendency
of opposite sublattices to have compensating spins.

This work was supported by No. MAT2006-03741
(Spain) (L. B.), by the NSF through Grants No. DMR-
0454699 and No. DMR-0704033 (H. A. F.), and by the
U.S. ONR (S. D. S.).

Note added.—After this work was completed, we be-
came aware of related work [28] by Saremi on undoped
graphene, which also concludes that the sign of RKKY
interactions depends on whether moments are located on
the same or opposite sublattices.
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FIG. 2 (color online). Spin density as a function of position for
a Zeeman field Ez � t=10 along the left edge of an undoped
zigzag graphene ribbon, of width N � 80 atoms along an arm-
chair chain. Spins induced at both edges, with a profile such the
Sz summed over all sites vanishes. Note that the perturbation
applied to the left edge induces a strong response at the right
edge, of net spin opposite that induced by the Zeeman field.
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