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We present a new class of boron sheets, composed of triangular and hexagonal motifs, that are more
stable than structures considered to date and thus are likely to be the precursors of boron nanotubes. We
describe a simple and clear picture of electronic bonding in boron sheets and highlight the importance of
three-center bonding and its competition with two-center bonding, which can also explain the stability of
recently discovered boron fullerenes. Our findings call for reconsideration of the literature on boron
sheets, nanotubes, and clusters.
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All boron nanotubes (BNT), regardless of diameter or
chirality, are predicted to be metallic and have large den-
sities of states (DOS) at their Fermi energies (EF) [1]. In
contrast, carbon nanotubes (CNT) can be semiconductors
or metals with small DOS at their EF. Metallic CNT are
used widely to study one-dimensional (1D) electronics
[2,3] and are superconducting at low temperatures [4,5].
Because of the larger DOS, BNT should be better metallic
systems for 1D electronics and may have higher super-
conducting temperatures than CNT.

Recent experiments have fabricated boron nanotubular
structures both as small clusters [6] and long, 1D geome-
tries [7]. Understanding the properties of BNT is crucial for
realizing their applications. For CNT, it has been fruitful to
study two-dimensional (2D) graphene: e.g., many proper-
ties of CNT are derived directly from graphene [8,9]. For
boron, however, no 2D planar structure exists in its crystals
since they are built from B12 icosahedra [10]. Researchers
have proposed several 2D boron sheets (BS). The hexago-
nal graphitic BS was found to be unstable [11,12]. Based
on extensive theoretical studies of boron clusters [11,13–
16], an Aufbau principle was proposed whereby the most
stable structures should be composed of buckled triangular
motifs [13]. Experiments on small clusters of 10–15 atoms
support this view [17]. A recent study of many possible
sheet structures found, again, the buckled triangular ar-
rangement to be most favorable [18]. Hence, 2D triangular
BS have been studied and used to construct BNT
[12,19,20].

In this Letter, we present a new class of boron sheets that
are more stable than the currently accepted ones. We
describe their structures, energetics, electronic states, and
provide a clear picture of the nature of their bonding that
clarifies their stability. We also show that clusters with
these structures are competitive with, or more favorable
than, those considered to date. Our findings have important
consequences for understanding and interpreting the prop-
erties of these systems. For example, the unusual stability
of B80 fullerenes [21] can be explained by our bonding

picture. Hence, in our view, it is necessary to reconsider
previous work in this general field.

We use density functional theory [22,23] within the
ab initio supercell plane-wave pseudopotential total energy
approach [24] using the PARATEC code [25]. We use both
the local density approximation (LDA) [23,26] and the
generalized gradient approximation (GGA) [27] for ex-
change and correlation. Most results below employ the
LDA and key results are checked by the GGA. The LDA
and GGA yield same qualitative results with minor quanti-
tative differences. The plane-wave basis has a 32 Ry cutoff
energy. K-point samplings for each system converge total
energies to better than 1 meV=atom. Norm-conserving
pseudopotentials have cutoff radii rsc � 1:7 and rpc �
2:1 a:u: The sheets are extended in x-y directions while
periodic images along z have a separation of 7.4 Å that is
sufficient for convergence. All structures are relaxed until
atomic Hellmann-Feynman forces are less than 1 meV= �A
and all in-plane stresses below 5 MPa.

Table I shows our results for four different sheets: the flat
and buckled triangular sheets [12,19], the hexagonal sheet,
and one of our sheets (� in Fig. 1). The hexagonal sheet is
unstable with respect to in-plane shear, so we obtain the
tabulated values by maintaining hexagonal symmetry
while optimizing the bond length. The binding energy is

 Eb � Eat � Esheet;

where Eat is the energy of an isolated spin-polarized boron
atom and Esheet is the energy per atom of a sheet. The
buckled triangular sheet is more stable than the flat one due
to the former forming stronger � bonds along the buckled
direction [19]. We also can reproduce previous results on
BNT made from triangular sheets [12,19].

Figure 1 shows two examples of BS which are more
stable than the buckled triangular sheet by 0.12 (�) and
0.08 (�) eV=atom. The new sheets are metallic, flat, and
composed of mixtures of hexagons and triangles. Sheet �
is the most stable structure in our library. These sheets can
be obtained by removing atoms from a flat triangular sheet.
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Each removal produces a hexagonal hole, generating a
mixture of hexagons and triangles. We define a ‘‘hexagon
hole density’’

 � �
No. of hexagon holes

No. of atoms in the original triangular sheet
:

The triangular sheet has � � 0, the hexagonal � � 1=3,
and sheets � and � have � of 1=9 and 1=7, respectively.

A priori, the energies of these sheets can depend on both
� and the pattern of hexagons. This results in a huge phase
space of hexagonal patterns for a given �. The most stable
structures occur when the hexagons are distributed as
evenly as possible at fixed �. Figure 2 shows the LDA
binding energies Eb versus� for this class of structures. Eb
reaches a maximum of 6:86 eV=atom at � � 1=9 (sheet
�). We also have investigated the other extreme where
hexagons form lines (e.g., sheet �). These ‘‘linear’’ struc-
tures are more stable than the buckled triangular sheet for
� � 1=9 but are less stable than the ‘‘evenly-distributed’’
class described above.

To explain the stability of these sheets, we now consider
the nature of their electronic bonding. Generally, in-plane
bonds formed from overlapping sp2 hybrids are stronger
than out-of-plane �-bonds derived from pz orbitals, so a
structure that optimally fills in-plane bonding states should
be most preferable. Guided by this principle, Fig. 3 shows
projected densities of states (PDOS) for five BS with

separate in-plane (the sum of s, px, and py) and out-of-
plane (pz) projections.

We begin with the hexagonal sheet, a textbook sp2

bonded system. All sp2 hybrids are oriented along nearest
neighbor vectors so that overlapping hybrids produce ca-
nonical two-center bonds. A large splitting ensues between
in-plane bonding and antibonding states. The pz orbitals
form their own manifold of bonding and antibonding
states. The pz PDOS vanishes at the transition point be-
tween the two. In the case of graphene, the four valence
electrons per atom completely fill the sp2 and the pz
bonding states, leading to a highly stable structure.
However, a boron atom has only three valence electrons.
As shown in Fig. 3, some of the strong in-plane sp2

bonding states are unoccupied, explaining the instability

FIG. 2 (color online). LDA Eb vs hexagon hole density � for
sheets with evenly distributed hexagons. The dashed line shows
Eb for the buckled triangular sheet. The solid blue curve is a
polynomial fit. The two limiting cases � � 0 and � � 1=3
correspond to the flat triangular and hexagonal sheets, respec-
tively. Maximum Eb occurs for sheet � (� � 1=9).

TABLE I. Binding energies Eb (in eV=atom) and geometric
parameters (in Å) of four BS: the flat and buckled triangular
sheets, the hexagonal sheet, and one of our sheets (� in Fig. 1).
dflat is the bond length of the flat triangular sheet. d� and ddiag

are the bond lengths of the buckled triangular sheet. d� is
between atoms with the same z, while ddiag is between atoms
with different z. �z is the buckling height. dhex is the bond length
for the hexagonal sheet. dnew gives the bond length range of
sheet �.

Flat triangular Buckled triangular
Eb dflat Eb d� ddiag �z

LDA 6.58 1.68 6.74 1.59 1.80 0.81
Previous LDA [19] 6.76a 1.69 6.94a 1.60 1.82 0.82
Previous LDA [12] 6.53 � � � 6.79 � � � � � � � � �

GGA 5.79 1.70 6.00 1.60 1.86 0.88
Previous GGA [18] 5.48b 1.71 5.70b 1.61 1.89 � � �

Hexagonal Sheet �
Eb dhex Eb dnew

LDA 5.82 1.65 6.86 1.64–1.67
GGA 5.25 1.67 6.11 1.66–1.69
Previous GGA [18] 4.96b 1.68 � � � � � �

aBoron’s atomic spin-polarization energy of 0:26 eV=atom ex-
plains the Eb differences between [19] and our work or [12].
bWhile the absolute Eb from [18] do not match our GGA results,
Eb differences among the sheets match very well.

FIG. 1 (color online). (a),(b) Two examples of our BS (top
view). Red solid lines show the unit cells. (c) Four boron
clusters: B24�a� and B32�a� are clusters with hexagonal holes;
B24�b� and B32�b� are the double-ring clusters from refs. [15,16].
Gray balls are boron atoms, and gray ‘‘bonds’’ are drawn
between nearest neighbors.

PRL 99, 115501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 SEPTEMBER 2007

115501-2



of this sheet. For our discussion below, this sheet is highly
prone to accepting electrons to increase its stability should
they be available from another source.

Next, we consider the flat triangular sheet. Each atom
has six nearest neighbors but only three valence electrons.
No two-center bonding scheme leads to a proper descrip-
tion. Previous work has noted qualitatively that a three-

center bonding scheme exists here [19]. We now present a
detailed model of the three-center bonding with crucial
implications for the stability of our new sheets. Figure 4
shows a choice of orientations for the sp2 hybrids where
three hybrids overlap within an equilateral triangle formed
by three neighboring atoms. For an isolated such triangle,
we have a simple 3� 3 tight-binding problem with D3

symmetry. Its eigenstates are dictated by group theory: one
low-energy symmetric bonding orbital b and two degener-
ate high-energy antibonding orbitals a�. (This is ‘‘closed’’
three-center bonding; details on this and other types of
bonds are found in standard references [28].) These orbi-
tals then broaden into bands due to intertriangle couplings.
Separately, the pz orbitals also broaden into a single band
(not shown). In Fig. 3, the in-plane PDOS becomes zero at
the energy separating in-plane bonding and antibonding
states. Ideally this sheet would be most stable if (i) two
electrons per atom would completely fill the b-derived in-
plane bonding bands, (ii) the antibonding a�-derived bands
were empty, and (iii) the remaining electron per atom
would half fill the low-energy (bonding) portion of the
pz-derived band. This would mean that the EF would be
at the zero point of the in-plane PDOS in Fig. 3. Clearly,
this picture is a valid zeroth-order description. However,
EF lies slightly above the ideal position and makes some
electrons occupy in-plane antibonding states. In other
words, this sheet prefers to donate these high-energy elec-
trons which has critical implications below. (Although we
seem to break symmetry by making half of the triangles
filled and half empty, filling the entire b derived in-plane
bonding band makes all hybrids equally occupied. This
restores full in-plane symmetry: i.e., the two possible
initial orientations of hybrids give the same final state.)

The flat triangular sheet, however, buckles under small
perturbations along z [12]. The buckling mixes in-plane
and out-of-plane states and can be thought of as a symme-
try reducing distortion that enhances binding. As shown in
Fig. 3, some states move below EF as indicated by the
small peak immediately below EF.

Finally, we turn to the new structures. The above dis-
cussion has shown that the hexagonal sheet should be able
to lower its energy by accepting electrons while the flat
triangular structure has a surplus of electrons in antibond-
ing states. From a doping perspective, the three-center flat

FIG. 4 (color online). Three-center bonding scheme in flat
triangular sheets. Left: orientation of sp2 hybrids. Center and
right: overlapping hybrids within a triangle (D3 symmetry) yield
one bonding (b) and two antibonding (a�) orbitals. These then
broaden into bands due to intertriangle interactions.

FIG. 3 (color online). PDOS for four BS. Projections are onto
in-plane (sum of s, px, and py, solid red) and out-of-plane
orbitals (pz, dashed blue). Thick vertical solid lines show the
Fermi energy EF. (We use 0.3 eV of Gaussian broadening. The
vertical scale is arbitrary.)
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triangular regions should act as donors while the two-
center hexagonal regions act as acceptors. Thus if the
system is able to turn into a mixture of these two phases
in the right proportion, it should benefit from the added
stability of both subsystems. Specifically, the hexagon-
triangle mixture with the highest stability should place
EF precisely at the zero-point of in-plane PDOS, filling
all available in-plane bonding states and none of the anti-
bonding ones. The remaining electrons should fill the low-
energy pz-derived states, leading to a metallic system.
These expectations are born out clearly in Fig. 3 as well
as by the energetic stability of the structures (Fig. 2). In
fact, the most stable sheet � satisfies this condition pre-
cisely while the less stable sheet � has a slight shift of EF
from the ideal position.

These findings have ramifications for boron clusters.
Our structures and bonding picture can explain that the
extreme stability of B80 fullerenes [21], composed of tri-
angular motifs with pentagonal holes, is due to a balance of
two- and three-center bonds. The � sheet can be consid-
ered the precursor of B80 just as graphene is the precursor
of carbon fullerenes. We also have studied some clusters.
Figure 1 shows the double-ring structures for B24 and B32

[15,16] along with clusters constructed by us. The new B24

cluster with a hexagon hole is less favorable by
0:08 eV=atom while the B32 is more favorable by
0:03 eV=atom than the corresponding double ring. The
stability of our sheets, of B80, and our clusters with hex-
agonal holes, suggests that for boron systems with more
than 20–30 atoms, the Aufbau principle breaks down and a
more general structural rule is required.

In brief, we demonstrate a novel bonding mechanism in
pure boron compounds arising from the competition be-
tween two- and three-center bonding. This explains the
stability of our boron sheets as well as larger boron clus-
ters. Our results have important implications for the stabil-
ity and structure of boron clusters, boron nanotubes, and
other boron systems.
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