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Direct evidence for the presence of an inertial energy cascade, the most characteristic signature of
hydromagnetic turbulence (MHD), is observed in the solar wind by the Ulysses spacecraft. After a brief
rederivation of the equivalent of Yaglom’s law for MHD turbulence, a linear relation is indeed observed
for the scaling of mixed third-order structure functions involving Elsässer variables. This experimental
result firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations
in the solar wind plasma.
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Space flights have shown that the interplanetary medium
is permeated by a supersonic, highly turbulent plasma
flowing out from the solar corona, the solar wind [1,2].
The turbulent character of the flow, at frequencies below
the ion gyrofrequency fci ’ 1 Hz, has been invoked since
the first Mariner mission [3]. In fact, velocity and magnetic
fluctuations power spectra are close to the Kolmogorov’s
�5=3 law [2,4]. However, even though fields fluctuations
are usually considered within the framework of magneto-
hydrodynamic (MHD) turbulence [2], a firm established
proof of the existence of an energy cascade, the main
characteristic of turbulence, remains a conjecture so far
[5]. Here we show, comparing data analysis to theoretical
predictions, that solar wind fields are in a state of fully
developed turbulence. We have rederived for the MHD
case a proportionality relation between the mixed third-
order moment of the longitudinal increments of the fields
and the increment scale that is the equivalent of
Kolmogorov’s law [6], the only exact and nontrivial theo-
retical result on turbulence. Using Ulysses spacecraft mea-
surements, we have observed the existence of such relation
in solar wind, which firmly puts low-frequency solar wind
fluctuations within the framework of MHD turbulence.
Since solar wind is the only natural plasma accessible for
in situ measurements, the importance of our finding stands
beyond the understanding of the basic physics of solar
wind turbulence, but it also has implications in a wide
number of areas of more practical interest, such as plasma
fusion, space weather, or solar physics.

Incompressible MHD equations are more complicated
than the standard neutral fluid mechanics equations be-
cause the velocity of the charged fluid is coupled with
the magnetic field generated by the motion of the fluid
itself. However, written in terms of the Elsässer variables
defined as z� � v� �4����1=2b (v and b are the velocity
and magnetic field, respectively, and � the mass density),
they have the same structure as the Navier-Stokes equa-

tions [5]
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where P is the total hydromagnetic pressure, � is the
viscosity, and � the magnetic diffusivity. In particular,
the nonlinear term appears as z� � rz�, suggesting the
form of a transport process, in which Alfvénic MHD
fluctuations z� propagating along the background mag-
netic field are transported by fluctuations z� propagating
in the opposite direction. This transport is active as z� and
z� are clearly not independent. Still, following the same
procedure as in [7,8], and assuming local (small scale)
homogeneity, a relation for mixed third-order structure
function, similar to the Yaglom equation for the transport
of a passive quantity [9], can be obtained in the stationary
state
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Here, �z� 	 z��x0� � z��x� are the (vector) increments
of the fluctuations between two points x and x0 	 x� r, r
andr0 are the gradients at the corresponding two points, @k
is the longitudinal derivative along the separation r, while
Y��r� are the mixed third-order structure function

hj�z�j2�z�
k
i and �� 	 �hjrz�j2i �

hom
3�hj@kz�j2i are the

pseudoenergy average dissipation rates, namely, the dis-
sipation rates of both hjz�j2i=2, respectively. Finally, �P
represent the increment of the total pressure fluctuations
and the kinematic viscosity � is here assumed to be equal
to the magnetic diffusivity �.
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The last term on the right-hand side of Eq. (2) is related
to large-scale inhomogeneities and disappears if the flow is
globally homogeneous. Also, assuming local isotropy, the
term containing pressure correlation vanishes, so that after
longitudinal integration of (2) and in the inertial range of
MHD turbulence (i.e., when �! 0), a linear scaling law

 Y��r� � �4
3�
�r (3)

is obtained, characterizing a turbulent cascade with a well-
defined finite energy flux ��. An alternative derivation of
this result using correlators instead of structure functions
had been first obtained in [10,11] and checked in numerical
simulations [12], while a similar relation involving the
vorticity and velocity in helical flows was derived in
[13,14]. When neutral fluid turbulence is considered,
Eq. (3) becomes [7] hj�vj2�vki � �4=3�r (� being the
average kinetic energy dissipation rate), from which
Kolmogorov’s �4=5 law for the longitudinal third-order
structure function can be recovered if there is full isotropy
as h��vk�3i � �4=5�r.

In this work, we show that relation (3) is indeed satisfied
in some periods within solar wind turbulence. In order to
avoid variations of the solar activity and ecliptic disturban-
ces (like slow wind sources, coronal mass ejections, eclip-
tic current sheet, and so on), we use high speed polar wind
data measured by the Ulysses spacecraft [15,16]. In par-
ticular, we analyze here the first seven months of 1996,
when the heliocentric distance slowly increased from 3 AU
to 4 AU, while the heliolatitude decreased from about 55


to 30
. The fields components are given in the RTN
reference frame, where R (radial) indicates the Sun-
spacecraft direction, centered on the spacecraft and point-
ing out of the Sun, N (normal) lies in the plane containing
the radial direction and the Sun’s rotation axis, while T
completes the right-handed reference frame. Note that,
since the wind speed in the spacecraft frame is much larger
than the typical velocity fluctuations, and it is nearly
aligned with the R radial direction, time fluctuations are
in fact spatial fluctuations with time and space scales
(� and r respectively) related through the Taylor hypothe-
sis, so that r � �hvRi� (note the reversed sign). From the
8 minutes averaged time series z��t�, we compute the time
increments �z���; t� � z��t� �� � z��t� and obtain the
mixed third-order structure function Y���hvRit�� �
hj�z���; t�j2�z�R ��; t�it using moving averages h�it on
the time t over periods spanning around 10 days, during
which the fields can be considered stationary. Also, even if
velocity and magnetic field are not exactly isotropic (the R
direction has weaker fluctuations at large scales), their
fluctuations have roughly the same amplitude at small
and intermediate scales, as checked from their spectrum.

A linear scaling Y���� � 4=3��hvRit� is indeed ob-
served in a significant fraction of the periods we examined,
with an inertial range spanning as much as two decades,

indicating for the first time the existence of a well-defined
inertial energy cascade range in plasma turbulence. In fact,
solar wind inertial ranges can even be larger than the ones
reported for laboratory fluid flows [8], showing the robust-
ness of this result. Figure 1 (two upper panels) shows some
example of scaling and the extension of the inertial range
for both Y����. The linear scaling law generally extends
from a few minutes to 1 day or more and is present in about
20 periods of a few days in the 7 months considered. This
probably reflects different regimes of driving of the turbu-
lence by the Sun itself, and it is certainly an indication of
the nonstationarity of the energy injection processes.
Several other periods are found in which the scaling range
is considerably reduced. In particular, the sign of Y���� is
observed to be either positive or negative. Since pseudoe-
nergies dissipation rates are positively defined, a positive
sign for Y���� [negative for Y��r�] indicates a (standard)
forward cascade with pseudoenergies flowing towards the
small scales to be dissipated. On the contrary, a negative
Y���� is the signature of an inverse cascade where the
energy flux is being transferred on average toward larger
scales. Figure 2 shows the location of the most evident
scaling intervals, together with the values of the flux rate
�� estimated through a fit of the scaling law (3), typically
of the order of a few hundreds in J kg�1 s�1. For com-
parison, values found for ordinary turbulent fluids are
1–50 J kg�1 s�1 [17]. It is worth noting that, in a large
fraction of cases, both Y���� switch from positive to
negative linear scaling (or vice versa) within the same
time period when going from small to large scales (see
the two bottom panels of Fig. 1). The occurrence of both
kind of cascades within the same flow is not so uncommon
within hydrodynamic turbulence. This phenomenon has
been attributed to some large-scale instability, as observed,
for example, in geophysical flows or when the flow is
affected by a strong rotation [18]. In the case of solar
wind plasma, a possible explanation for the inverse cascade
could be the enhanced intensity of the background mag-
netic field. This would make the turbulence mainly bidi-
mensional allowing for an inverse cascade as observed in
numerical simulations [19]. It should also be noticed that in
most of the cases the time scale at which the cascade
reverses its sign is of the order of 1 day. This scale roughly
indicates where the small scale Alfvénic correlations be-
tween velocity and magnetic field are lost [20,21]. This
could mean that the nature of the fluctuations changes
across the break. However, these particular aspects still
deserve to be adequately considered within the solar wind
context.

At this point, the question is why the scaling is not
observed all of the time within the solar wind. As already
stated, Eq. (2) reduces to the linear law (3) only when local
homogeneity, incompressiblity, and isotropy conditions are
satisfied. If this is not the case, then the full relation (2)
should be used and is much more complicated to check

PRL 99, 115001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 SEPTEMBER 2007

115001-2



experimentally, as it is not even isotropic. In general, solar
wind inhomogeneities play a major role at large scales so
that local homogeneity is generally fulfilled within the
range of interest. Regarding incompressibility, it has been
shown that compressive phenomena mainly affect shocked
regions and dynamical interaction regions like stream-
stream interface [1,2]. However, the time interval we ana-
lyze, because of Ulysses high latitude location, is not
affected by these compressive phenomena [22]. On the
other hand, it has also been shown [2] that magnetic field

compressibility increases mainly at very small scales
within the fast wind regime. It follows that the incompres-
sibility assumption can be considered valid to a large
extent for the analyzed interval and at intermediate scales.
The large-scale anisotropy, mainly due to the average
magnetic field, is only partially lost at smaller scales, and
a residual anisotropy is always present [23,24], generally
breaking the local isotropy assumption. Thus, while inho-
mogeneity, compressibility, and anisotropy could all be
responsible for the loss of linear scaling, anisotropy proba-
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FIG. 2 (color online). Hourly averaged
quantities are represented as a function
of the flight time of Ulysses. The top
panels represent, respectively, the solar
wind speed, the magnitude of the mag-
netic field, the particle density, the dis-
tance from the Sun and the heliolatitude
angle. In the bottom panel are plotted the
values of ��, calculated through a fit
using the relation (3) during the periods
where a clear linear scaling exists.
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FIG. 1 (color online). The scaling be-
havior of Y���� as a function of the time
scale � for four different periods we
examined. Different colors of the curves
refer to positive and negative values of
the mixed structure functions Y���� and
thus of ��. The full black lines corre-
spond to linear scaling laws to guide the
eye.
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bly is the main candidate within high latitude regions of the
solar wind. It is important to note that the presence of a
Yaglom-like law that involves the third-order mixed mo-
ment is more general than the phenomenology usually
involving the second order moment. Indeed, while the
Yaglom MHD relation (2) involves only differences along
the parallel direction that are in fact the only quantities
accessible from single satellite measurements, phenome-
nological arguments involve the full spatial dependence of
vector fields that cannot be directly measured yet. This
means that our result is compatible with both Kolmogorov
and Iroshnikov-Kraichnan type cascade [2,5], and it does
not help in discriminating between these phenomenologies
[25,26].

In conclusion, we observed, for the first time in the solar
wind, the only natural plasma directly accessible, evidence
of Yaglom MHD scaling law indicating the existence of a
local energy cascade in hydromagnetic turbulence. The
scaling holds in a number of relatively long periods of
about 10 days and also provides the first estimation of the
pseudoenergy dissipation rate. Although our data might not
fully satisfy requirements of homogeneity, incompressibil-
ity and isotropy everywhere, the observed linear scaling
extends on a wide range of scales and appears very robust.
The unexpected existence of the scaling law in anisotropic,
weakly compressible, and inhomogeneous turbulence still
needs to be fully understood. Our result establishes a firm
point within solar wind phenomenology, and, more gener-
ally, provides a better knowledge of plasma turbulence,
carrying along a wide range of practical implications on
both laboratory fusion plasmas and space physics.

The use of data of the plasma analyzer (principal inves-
tigator D. J. McComas, Southwest Research Institute, San
Antonio, Texas, USA) and of the magnetometers (principal
investigator A. Balogh, The Blackett Laboratory, Imperial
College, London, UK) aboard the Ulysses spacecraft is
gratefully acknowledged. The data have been made avail-
able through the World Data Center A for Rockets and
Satellites (NASA/GSFC, Greenbelt, Maryland, USA).
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