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We report on experiments of chaotic mixing in a closed vessel, in which a highly viscous fluid is stirred
by a moving rod. We analyze quantitatively how the concentration field of a low-diffusivity dye relaxes
towards homogeneity, and we observe a slow algebraic decay of the inhomogeneity, at odds with the
exponential decay predicted by most previous studies. Visual observations reveal the dominant role of the
vessel wall, which strongly influences the concentration field in the entire domain and causes the
anomalous scaling. A simplified 1D model supports our experimental results. Quantitative analysis of
the concentration pattern leads to scalings for the distributions and the variance of the concentration field
consistent with experimental and numerical results.
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Low-Reynolds-number fluid mixing has a variety of
applications ranging from geophysics to industrial mixing
devices. While turbulent flows lead to highly efficient
mixing, simple laminar flows with chaotic Lagrangian
dynamics also promote rapid homogenization [1]. Dy-
namical systems approaches based on flow kinematics
have provided a first insight into chaotic mixing [2,3]. A
deeper understanding of homogenization processes is
gained by examining the interplay between chaotic stirring
and diffusion. Several experimental [4,5] and numerical
[6,7] studies obtained an exponential decay for the variance
of a diffusive scalar concentration field in a chaotic mixer.
This behavior is attributed to an asymptotic spatial struc-
ture of the scalar dubbed strange eigenmode [8] that results
in a global exponential decay of the spatial contrast.
However, these theories focus on ideal mixing systems,
e.g., with periodic or slip boundary conditions, far from the
reality of industrial mixing devices with solid no-slip
walls. It has been suggested [9,10] that mixing might be
slower in bounded flows, but experimental evidence is still
lacking.

In this Letter, we study experimentally dye homogeni-
zation by chaotic mixing in a 2D closed flow. Precise
measurements of the concentration field yield ‘‘slow’’
algebraic decay of an inhomogeneity, at odds with the
expected exponential decay. We relate quantitatively this
slow mixing to the chaotic nature of trajectories initially
close to the no-slip wall, which end up escaping in the bulk
and slow down the whole mixing process.

A cylindrical rod periodically driven on a figure-eight
path gently stirs viscous sugar syrup inside a closed vessel
[Fig. 1(a)]. The stirring scale is comparable to the vessel
size, in contrast to other devices such as arrays of magnets
[4,5]. This protocol is a good candidate for efficient
mixing: we can observe on a Poincaré section [11]
[Fig. 1(a)]—computed numerically for the corresponding
Stokes flow—a large chaotic region spanning the entire

domain, including the vicinity of the wall. The signature of
chaotic advection can also be observed in Fig. 1(a), where a
complex lamellar pattern is created by the stretching and
folding of an initial dye blob into exponentially thin fila-
ments. The fluid viscosity � � 5� 10�4 m2 � s�1 together
with rod diameter ‘ � 16 mm and stirring velocity U �
2 cm � s�1 yield a Reynolds number Re � U‘=� ’ 0:6,
consistent with a Stokes flow regime. A spot of low-
diffusivity dye (Indian ink diluted in sugar syrup) is in-
jected at the surface of the fluid, and we follow the evolu-
tion of the dye concentration field during the mixing
process (see Fig. 1). The concentration field is measured
through the transparent bottom of the vessel using a 12-bit
CCD camera at resolution 2000� 2000.

Despite the exponential stretching occurring in the bulk,
the resulting variance �2�C� of the concentration field
(measured in a large central rectangular region) decays
surprisingly slowly with time t as a power law t�m with
m ’ 3:2 [Fig. 1(b)], and not exponentially as expected.
This behavior persists until the end of the experiment (35
periods), by which time the variance has decayed by more
than 3 orders of magnitude. Moreover, concentration
probability distribution functions (PDFs) shown on
Fig. 1(c) exhibit wide power-law tails on both sides of the
most probable value. The probability of ‘‘white’’ (zero)
concentration decays very slowly with time, whereas the
peak shifts towards lower values.

In order to understand these surprising scalings, we first
describe the various mechanisms at play during the mixing
process. A blob of dye, initially released close to the vessel
center, is transformed into a complicated pattern expanding
towards the wall with time. We distinguish at each instant
the growing ‘‘mixed region’’, delimited by the advected
blob frontier, and the remaining wall region where C � 0,
in the vicinity of the vessel wall. This distinction is obvious
in Fig. 1(a) where one can observe a central heart-shaped
mixed region and an annular unmixed wall region. As the
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chaotic region spans the entire flow, fluid particles initially
close to the zero-velocity wall eventually escape from the
wall region to wander through the whole chaotic region.
Trajectories escape along the unstable manifold of para-
bolic separation points on the wall [3,12]. The signature of
such an escape path can be visualized on Fig. 1(a) where
unmixed fluid from the wall region is ‘‘sucked’’ inside the
mixed region through its white cusp, close to the rod. This
results in the periodic injection of broad white strips that
can be observed inside the mixed region. The mixed region
then grows towards the wall to make up for this mass
injection. Incompressibility combined with zero-velocity
condition at the wall leads [9] to a shrinking distance
between the mixed region border and the wall scaling as
d�t� / t�1. This scaling is verified experimentally. The
area of unmixed fluid from the wall region injected at
each period inside the mixed region then scales as _d�t� /
t�2. As a result, the mean concentration value inside the
bulk decreases with time as �1� d�t���1. Simultaneously,
the mixed region is stretched and folded at each half cycle
of the rod movement [see Fig. 2(a)] in a baker’s-map-like
fashion [13]. However, it should be noted that the two
folded parts are not stacked directly onto each other but
separated by the newest injected white strip. Also note that
the part ‘‘attached’’ to the rod has experienced more
stretching than the one ‘‘left behind’’. Briefly, (i) chaotic
stretching imposes that the typical width of a dye filament
in the bulk shrinks exponentially down to the diffusion or
measurement scale, yet (ii) wide strips of unmixed fluid of
width _d�t� / 1=t2 are periodically inserted between these
fine structures. In the following we derive how these two
effects lead to the observed scalings.

For this purpose, we simplify the 2D problem by char-
acterizing only 1D concentration profiles C�x; t� along a
secant to the stretching direction—the dashed segments in
Fig. 2(a)—that is, we neglect the variation of the concen-
tration along a dye filament on a scale comparable to the

vessel size. We thus call from now on ‘‘mixed region’’ the
intersection of the 2D mixed region with such a segment.
The effect of the mixer during a half period then amounts
to the action of a one-dimensional discrete-time map that
transforms concentration profiles by inserting an interval
of width _dt of fluid from the wall region between two
inhomogeneously compressed images of the mixing region
at the previous time [see Fig. 2(a)]. Such a map f, defined
on �0; 1� for simplicity, evolves concentration profiles as
C�x; t	 1� � C�f�1�x�; t� and meets the following re-
quirements: (i) it is a continuous double-valued function
to account for the stretching or folding process; (ii) x � 0
is a marginally unstable point of f�1; the correct dynamics
close to the wall are indeed reproduced by imposing
f�1�x� ’ x	 ax2 	 � � � , a > 0 for small x; (iii) because
of mass conservation, at each x, the local slopes of the two
branches add up to 1. Other details of f are unessential for
our discussion. Diffusion is mimicked by letting the con-
centration profile diffuse between successive iterations of
the map. This model is a modified baker’s map [13], with a
parabolic point at x � 0, whereas the dynamics are purely

FIG. 2. (a) Transport mechanisms: (i) the rod stretches and
folds the mixed region and (ii) a white strip of unmixed fluid is
injected between the two folded parts. (b) Stretched strips of
dye (black) are smeared out by diffusion on a scale wB (gray).
The concentration C of a pixel x is then given by adding the
concentrations coming from strips inside a box of size wB
around x.

FIG. 1 (color online). (a) Chaotic mixing experiment in a closed vessel: a rod moves periodically on a figure-eight path [see
Fig. 2(a)] and transforms an initial spot of dye into a complicated filamentary pattern. Inset: Poincaré section obtained numerically for
the corresponding Stokes flow. Note that the chaotic region spans the entire domain. (b) Evolution of the variance of the concentration
field in a fixed central region. �: experiment ,
: numerical simulation (see Fig. 3 for a description). Solid line fits: contribution of the
white pixels �2

W ’ �2 logt	 logwB�=�log�� t2� derived below. (c) Experimental concentration PDFs in the bulk at time t � 13, 17,
31 periods. Both sides of the peak can be fitted by power laws �Cmax � C�

�2 (red and blue plots). Inset: left (‘‘light-gray’’) tail of the
peak, P�C� against jCmax�t� � Cj.
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hyperbolic in a classical baker’s map. Numerical simula-
tions for a specific choice of f lead to results shown in
Fig. 1(b) and 3: both the power-law evolution of the
variance and the different aforementioned features of the
experimental PDFs are reproduced by the simulations.

The map transforms an initial blob of dye of width s0

into an increasing number of strips with widths s0�1 � � ��t,
resulting from different stretching histories inside the
mixed region, where �t is the compression experienced
at time t. White strips also experience this multiplicative
stretching from their injection time. As the mixed region
grows towards the wall, different values of stretching will
be sampled. It will nevertheless be justified below that the
concentration measures only require knowledge of the
stretching histories traced back during a finite number of
periods. This allows us to define in a ‘‘quasistatic’’ ap-
proximation a slowly varying instantaneous ‘‘Lyapunov
exponent’’ ��t� � exp�h� log�j @f

�1�x�
@x j�iMR�, that is, the

geometric mean of the compression taken over the mixed
region (MR) at time t. Note that as the white strips are
injected close to the center of the domain, the two branches
of f have comparable mean slopes, yielding the estimate
�� 0:5. Without diffusion, dye strips would have a typical
width s0�t at time t. However, the balance between stretch-
ing and diffusion imposes that the width of a strip stabilizes

at the Batchelor scale wB �
������������������������
�=�1� �2�

p
, where � is the

diffusion coefficient. wB is thus the smallest length scale
that can be observed in the concentration profile, and
different elementary strips may overlap [Fig. 2(b)]. Since
the concentration field is probed by averaging it on the
pixel size wpx, which is smaller than wB, the concentration
at a pixel is given by adding the contributions from strips
contained in a box of size wB around the pixel. Hence we
characterize P�C� by considering the different combina-
tions of strip widths for a zero-diffusivity dye—the con-
centration profile in Fig. 2(b)—that one might find in a box
of size wB. We will distinguish between three generic cases
corresponding to three different regions of the histogram
P�C� [see Fig. 1(c) and 3]: a white (W) peak at C � 0
corresponding to injected white strips still wider than wB,
light gray (LG) and dark gray (DG) tails corresponding to,
respectively, smaller and larger concentrations than the
peak (mean) concentration. Once we have quantified the
proportion of boxes contributing to these different values
of C, the variance will be readily obtained as

 �2�C� �
Z
�C� hCi�2P�C�dC � �2

W 	 �
2
LG 	 �

2
DG:

(1)
Let us start with white (zero) concentration measures

that come from the stretched images of white strips in-
jected before t. White strips injected at an early time have
been stretched and wiped out by diffusion, that is, their
width has become smaller than wB. Hence the oldest white
strips that can be observed have been injected at the time
ti�t� such that _dti�

t�ti � wB. Note that from twhite defined
by _dtwhite

� wB, the injected white strip is smaller than wB

and no white pixels can be observed. Before twhite, the
number of white pixels is proportional to nW �
dti�t� � dt / �t� ti��tit�

�1 for large t (using dt / t�1). As
t� ti ’ �2 logt	 logwB�= log�, nW ’ �2 logt	 logwB�=
�log�� t2�. We deduce �2

W ’ �2 logt	 logwB�=�log��
t2� for t < twhite and �2

W � 0 after twhite.
We now concentrate on the distribution of light gray

values corresponding to white strips that have just been
compressed below the cutoff scale wB. We propose to
approximate the measured value C as the average of the
biggest white strip with width � < wB and mixed ‘‘gray’’
fluid whose concentration is close to the most probable
concentration Cg. A box with a white strip of scale � thus
bears a concentration C� � Cg�1� �=wB� and we can
relate P�C� to the distribution of widths of the images of
the injected white stripsQ���. A white strip injected at t0 is
transformed into 2t�t0 images with scales _dt0 �t�t0 .
Therefore, Q��� � ��= _dt0�

log�2�= log��� � �1=� log��, result-
ing in
 

P�C� � _dlog2= log���1�
t

wB
Cg�t�

�
wB

�
1�

C
Cg

��
�log2= log���1

� g�t��Cg � C��log2= log���1: (2)

P�C� thus has a power-law tail in the light gray levels
whose exponent depends on the mean stretching �. We
observe satisfactory agreement between this prediction and
both experimental data and numerical 1D simulations [see
Fig. 1(c) and 3] where for this tail P�C� / �C� Cg���

with � & 2, consistent with � & 0:5, a rather homogene-
ous stretching. Also note that the amplitude of the light
gray tail decreases as a power law g�t� / _dlog2= log�1=��

t /

t�2�log2= log�1=���. We deduce

 �2
LG � g�t�

Z Cg

Cmin

�Cg � C�2�����dC;

FIG. 3. Numerical concentration PDFs (t � 15, 18, 25) ob-
tained by letting concentration profiles evolve as C�x; t	 1� �
C�f�1�x�; t�, f�x�: f1�x� � x� ax2 	 ��� 1	 a�x3; f2�x� �
1� ax2 	 ��� 1	 a�x3 with a � 0:9 and � � 0:55. Upper
(lower) inset: light (dark) gray tail, P�C� against jCmax � Cj.
We observe the same power-law decay �Cmax � C�

�2 on both
sides of the maximum as in the experiment [Fig. 1(c)].
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where ���� � 1� log2= log�, and Cmin is the smallest
concentration observed [Cmin � 0 for t < twhite and Cmin �

Cg�1� _dt=wB� for t > twhite]. For t < twhite the integral is
constant and �2

LG / g�t� / _dt / t
�2. On the other hand, for

t � twhite,

 �2
LG �

g�t�
2	 ����

�Cg � Cmin�
3����� / t��6	2�log2= log���:

For ���� � 2 as we observed, the exponent in the above
power law is about �4.

Finally, the dark gray tail corresponds to boxes contain-
ing images of mixed regions from early times—thus with
an important percentage of black—that have experienced
little stretching. It is therefore not sufficient to consider
only the mean stretching � as before, since stretching
histories far from the mean are involved. Using the large-
deviation function S for the finite-time Lyapunov expo-
nents distribution [14], we derive

 P�C; t� �
2t�t0 exp���t� t0�S��

logwB
t�t0
	 log���

�C� hCi�2�t� t0�
2 ;

where t0�C� is the earlier time at which the mixed region
had a mean concentration C, so that C � hCi�1� dt0�

�1.
At a fixed time the dark gray tail decreases as the dominant
contribution �C� hCi��2; however, the probability to ob-
serve a fixed concentration value decays exponentially,
allowing us to neglect �2

DG in (1). Both the �C� hCi��2

shape and the rapid falloff of the dark gray tail can be
observed on Fig. 1(c) and 3.

We now sum these contributions to obtain �2�C�. In the
experiment, the crossover twhite is estimated as 30 periods.
However, 3D effects inside the fluid prevented us from
conducting experiments for more than 35 periods. For this
early regime, fitting the data with �2

W / �2 logt	
logwB�=t

2 [black line on Fig. 1(b)] gives good results,
except close to twhite where the contribution of the light
gray tail starts to dominate. In contrast, in numerical
simulations we observe [Fig. 1(b)] both the �2 logt	
logwB�=t2 behavior (black line), which can be interpreted
as in the experiment, and the t�4 decay after twhite (100
periods for the case studied) given by �2

LG.
Note finally that the algebraic nature of d�t� permits

crude ‘‘first-order’’ approximations such as considering
only the mean stretching given by the Lyapunov exponent
as we did. The injection process dominates other mecha-
nisms put forward to analyze concentration distributions,
such as the evolution of the distribution by self-convolution
due to the random addition of concentration levels [15,16].
The strange eigenmode formalism also fails to describe
this nonasymptotic regime as the spatial mixing pattern is
still evolving.

In conclusion, we propose a scenario for 2D mixers with
a chaotic region that extends to fixed walls. As soon as the
flow is sufficiently slow close to the wall—a rather generic

situation—and keeps for long times an unmixed pool close
to a parabolic point, the unstable manifold of which feeds
fluid into the mixing region, the entire concentration field
is affected, regardless of distance from the walls. The
algebraic scalings for the variance and concentration dis-
tributions can be predicted from the filamentary stirring
pattern generated by a combination of stretching, folding,
and injection of fluid from the fixed walls. Our reasoning
could be extended to other algebraic expressions of d�t�
resulting from different hydrodynamics at the wall. In the
present case (no-slip wall), we derive a power-law (asymp-
totically t�4) evolution for the decay of the concentration
variance, and we find very good agreement between our
analytical, experimental, and numerical results. Our simu-
lations of the well-studied viscous blinking vortex flow [3]
also yield the same algebraic decay for the variance of a
coarse-grained concentration, obtained by advecting a
large number of points. These numerical results will be
presented in a future paper, where we will generalize our
approach to other systems characterized by continuous
injection of inhomogeneity, such as open flows.
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