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We discuss a novel kind of nonlinear coupler with one channel filled with a negative index
metamaterial. The opposite directionality of the phase velocity and the energy flow in the negative index
metamaterial channel facilitates an effective feedback mechanism that leads to optical bistability and gap
soliton formation.
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Nonlinear optical couplers have attracted significant
attention owing to their strong potential for all-optical
processing applications, including switching and power-
limiting devices. Transmission properties of a nonlinear
coherent directional coupler were originally studied by
Jensen [1], who concluded that a coupler consisting of
two channels made of conventional homogeneous nonlin-
ear materials is not bistable.

Bistability (or multistability) is a phenomenon in which
the system exhibits two (or more) output intensities for the
same input intensity [2,3]. Optical bistability has been
predicted and experimentally realized in various settings,
including a Fabry-Perot resonator filled with a nonlinear
material [3], layered periodic structures [4], and nonlinear
couplers with external feedback mechanisms [5–8]. In this
Letter we describe a novel nonlinear optical coupler struc-
ture that utilizes a negative index metamaterial (NIM)
[9,10] in one of the channels and a conventional positive
index material (PIM) in another channel as shown in Fig. 1.
The linear transmission properties of a similar optical
structure were previously studied by Alu and Engheta
[11]. We show that such a nonlinear coupler (NLC) can
be bistable. Bistability occurs owing to the effective feed-
back mechanism enabled by a fundamental property of
NIMs—opposite directionality of the wave vector and
the Poynting vector. Moreover, our results suggest that
the entirely uniform PIM-NIM coupler structure supports
gap solitons—a feature commonly associated with peri-
odic structures [4,12–18].

Continuous wave propagation in a nonlinear coupler can
be described by the following system of equations:
 

i�1
@a1

@z
� �12a2 expf�i�zg � �1ja1j

2a1 � 0;

i�2
@a2

@z
� �21a1 expfi�zg � �2ja2j

2a2 � 0;
(1)

where a1 and a2 are the complex normalized amplitudes of
the modes in the PIM and NIM channels, respectively; �12

and �21 are the coupling coefficients defined as in Ref. [1];

�j �
!0n2j�j�!0�P0

cAeff
is a normalized nonlinearity coefficient;

n2j �
12�2��3�j
"j�!0�c

, ��3�j is the nonlinear (electric) susceptibility;

"j and �j are linear frequency-dependent dielectric per-
mittivity and magnetic permeability; !0 is carrier fre-
quency; Aeff is the effective area; c is the speed of light
in a vacuum; � � �1 � �2 is the mismatch between the
propagation constants in the individual channels; and �j is

the sign of the refractive index nj �
�����������������������������
"j�!0��j�!0�

q
. In

the case of the PIM-NIM coupler�1 is positive, while�2 is
negative.

Assuming the following form for the solutions of
Eqs. (1), a1;2 � u1;2 exp�iqz� exp��i �2 z�, in the linear re-
gime, we find the following relation between q and � for
the PIM-NIM coupler:

 q2 �

�
�
2

�
2
� �12�21; (2)

FIG. 1. A schematic of a nonlinear PIM-NIM coupler. Light is
initially launched into channel 1 (PIM). A wave vector � and a
Poynting vector S are parallel in the PIM channel and antipar-
allel in the NIM channel, enabling a new backward-coupling
mechanism.
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which indicates the presence of a bandgap for j�j<
2
��������������
�12�21
p

. The photonic bandgap is a feature typical for
periodic or distributed feedback (DFB) structures such as
fiber Bragg gratings or thin film stacks [12]. Formation of
the bandgap in a uniform structure considered here is one
of the unique properties of the PIM-NIM coupler arising
from introduction of the NIM into one channel of the
coupler. Introducing two parameters a2 � u2

1 � u
2
2 and

f � u2=u1, the nonlinear counterpart of the relation (2)
can be written in the form
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(3)

Figure 2 shows linear (a) and nonlinear �-q curves (b)–(d)
for the case of �1, �2 > 0. In Fig. 2(b) both PIM and NIM
channels are nonlinear, with the same nonlinear coeffi-
cients. Beyond a critical power level, the lower branch of
the �-q curve forms a loop. Both linear and nonlinear �-q
curves in Figs. 2(a) and 2(b) resemble dispersion relations
found in the case of linear and nonlinear fiber Bragg
gratings [12,19], with the difference that in the nonlinear
case the effect of cross-phase modulation has been ne-
glected and forward and backward waves are spatially
separated. However, importantly, in the case of PIM-NIM
NLC both channels are made of homogeneous material
with no periodicity or external feedback mechanism. The

effective feedback mechanism is provided by the inherent
property of the NIMs—opposite directionality of the phase
velocity and the Poynting vector. As shown in Fig. 1, while
the propagation vectors of the waves propagating in both
NLC channels point in the same direction, assuring the
necessary phase-matching condition, the Poynting vectors
corresponding to the energy flow direction point in oppo-
site directions. As light propagates in the PIM channel in
the forward direction, it continuously couples to the NIM
channel, where it flows in the backward direction.
Therefore, the PIM-NIM coupler acts as an effective
DFB structure. Figure 2(c) corresponds to the case of
different nonlinear coefficients in the two channels, while
Fig. 2(d) corresponds to the case of the nonlinear PIM and
linear NIM channel. Figures 2(c) and 2(d) suggest that
there are more degrees of design freedom in the NLC
case in comparison with conventional DFB structures since
in the general case the nonlinear coefficients �1 and �2 as
well as the coupling coefficients �12 and �21 may be not
identical and can be tailored.

Although in the general case �12 � �21 and �1 � �2, in
order to highlight the most important new physical effects
associated with the PIM-NIM NLC, in the following dis-
cussion we assume identical linear coupling coefficients
�12 � �21 � � and nonlinear coefficients �1 � �2 � �.
Then, making the following substitution, a1 �
A1 expfi	1g and a2 � A2 expfi	2g, where A1, A2, 	1,
and 	2 are real functions of z, the equations for A1, A2,
and  � 	1 �	2 � �z can be written in the form
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(4)

From Eqs. (4) the constants of the motion are given by

 C � P1 � P2 � � 4A1A2 cos � 2��1��� �A2
2�A

2
1;

(5)

where P1 � A2
1 and P2 � A2

2. C is defined by the boundary
conditions at z � 0 and z � L, where L is the length of the
coupler. The expression for the first constant of motion C
should be compared to that of conventional PIM-PIM NLC
in which case C � P1 � P2.

Power evolution in channel 1 is described by the follow-
ing equation:
 �

@P1

@z

�
2
� �f4�� ��gP1P2 � ���P1

�
1

4
�2�2 � ��� �P2�

2P2
1: (6)

If light initially is launched into channel 1, i.e., A1�0� �
A0, A2�L� � 0, then C � A2

1�L�. In the case of � � 0, the
solutions for P1 and P2 are found in the form
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FIG. 2. PIM-NIM coupler �-q relations: (a) linear (�12 �
�21 � 5), (b) two channels with the same nonlinear susceptibil-
ities �1 � �2 � � (�12 � �21 � 5, a2�=� � 6), (c) two chan-
nels with different nonlinear susceptibilities (�12 � �21 � 5,
a2�1=� � 6, a2�2=� � 3), (d) the NIM channel is linear, while
the PIM channel is nonlinear (�12 � �21 � 5, a2�1=� � 6,
a2�2=� � 0).
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 P1�z� � C
dn�2��z� L�=m;m	 � 1

2dn�2��z� L�=m;m	

P2�z� � C
1� dn�2��z� L�=m;m	

2dn�2��z� L�=m;m	
;

(7)

where m � k��������
1�k2
p � 1�������������������

1���C=4��2
p , dn�z0; k0� is the Jacobi

elliptic function [20]. The parameter C can be found using
the transcendental equation

 A2
0 � C

dn�2�L=m;m	 � 1

2dn�2�L=m;m	
: (8)

Finally, one can define transmission and ‘‘reflection’’ co-
efficients for the nonlinear coupler as

 I �
P1�L�

A2
0

�
C

A2
0

�
2dn�2�L=m;m	

1� dn�2�L=m;m	

R � 1�
P1�L�

A2
0

� 1�
C

A2
0

�
1� dn�2�L=m;m	
1� dn�2�L=m;m	

:

(9)

Figure 3(a) shows output power P1�L� as a function of
input power P1�0� for three values of �L � 2 (solid line),
�L � 4 (dashed line), and �L � 6 (dot-dashed line), as-
suming � is varying, the coupler length L � 1 (in the units
of length) is fixed and �L � 6. As the coupling � between
the channels increases and the effective feedback mecha-
nism is established, PIM-NIM NLC becomes bistable or
more generally multistable as illustrated in the case of
�L � 6. Its transmission characteristics are very similar
to those of DFB structures [12–15]. Figure 3(b) shows the
transmission coefficient P1�L�=P1�0� as a function of input
power P1�0� for two values of �L � 1 (solid line) and
�L � 6 (dashed line), assuming � is varying, the coupler
length L � 1 is fixed and �L � 6. As the nonlinearity
coefficient decreases, the threshold of bistability shifts to
higher values as expected.

The phenomenon of bistability is closely related to the
notion of gap solitons found in different settings, including

DFBs and asymmetric dual-core fibers [12–19,21,22]. As
shown in Fig. 3(b), the transmission coefficient approaches
I � 1 at the points 1, 2, 3, and 4, suggesting the existence
of transmission resonances. At the resonance correspond-
ing to point 1 in Fig. 3(b), spatial power distributions P1�z�
(solid line) and P2�z� (dashed line) peak in the middle of
the structure as shown in Fig. 4. The dot-dashed line in
Fig. 4 shows the constant of the motion C � P1 � P2. At
this transmission resonance incident light is coupled to a
solitonlike static entity that is known as a gap soliton
[14,15]. Nonstationary gap solitons in PIM-NIM NLC
analogous to those found by Aceves and Wabnitz [17] in
the context of periodic media will be discussed elsewhere.
It is notable that a gap soliton, usually existing in periodic
structures, forms in a uniform structure in the case of the
PIM-NIM coupler, owing to the new backward-coupling
mechanism in the PIM-NIM coupler.

In summary, we found that backward coupling between
the modes propagating in the PIM and NIM channels
enabled by the basic property of NIMs, oppositely directed
phase velocity, and the Poynting vector, results in optical
bistability in PIM-NIM NLC and gap soliton formation.
These effects have no analogies in conventional PIM-PIM
couplers composed of uniform (homogeneous) waveguides
with no feedback mechanism. In this study we have only
considered time-independent properties of an ideal lossless
coupler in order to highlight the essence of new phe-
nomena in the PIM-NIM coupler—bistability and gap
solitons. In realistic, currently available NIMs both dielec-
tric permittivity and magnetic permeability typically have
non-negligible imaginary parts, implying that these mate-
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FIG. 3. (a) Output power P1�L� as a function of input power
P1�0� for three values of �L � 2 (solid line), �L � 4 (dashed
line) and �L � 6 (dot-dashed line) when �L � 6.
(b) Transmission coefficient defined as P1�L�=P1�0� as a func-
tion of P1�0� for �L � 1 (solid line) and �L � 6 (dashed line)
when �L � 6. Transmission resonances are indicated by the
numbers 1, 2, 3, and 4.

FIG. 4. Spatial distributions of P1 (solid line), of P2 (dashed
line), and the constant of motion C � P1 � P2 (dot-dashed line)
versus z at transmission resonance indicated by the number ‘‘1’’
in Fig. 3(b).
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rials are lossy. It is expected that moderate losses would
result in the increase in the input intensity required for the
transition from the low-transmission state to the high-
transmission state. A detailed numerical investigation of
effect of losses as well as the time-dependent properties of
the PIM-NIM coupler will be addressed in our future
publications.
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