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We derive an expression for the harmonic signal from nonadiabatically aligned molecules that accounts
for both electronic and rotational motions. We identify a single approximation, which converts the
expression into a physically transparent and computationally convenient form. Our analytical result gives
explicitly the time dependence of the harmonic spectra, thus explaining the observations of a class of
recent experiments. Moreover, it points to new opportunities for generating insights into the structure and
dynamics of molecular systems through harmonic generation experiments from aligned molecules. This
includes information regarding the rotational and electronic dynamics of isolated systems, as well as
regarding the decoherence and relaxation in molecules subject to a dissipative environment.
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High harmonics generation (HHG) from prealigned
molecules has been the topic of rapidly growing experi-
mental [1–11] and theoretical [4,12–23] interest since the
pioneering experiments of [3] that demonstrated the pos-
sibility of using harmonic spectra to explore the underlying
electronic wave functions. HHG is well understood in
terms of a 3-step process [24], wherein ionization takes
place close to the maximum of the electric field, generating
a free-electron wave packet in the continuum that follows
the electric field oscillations. If the field is linearly (or close
to linearly) polarized, the electron will revisit the core, with
the most energetic recollisions taking place near the second
zero of the laser electric field after the electron release.
Possible consequences of the recollision are elastic or
inelastic scattering events or a recombination, whereby
photons at harmonics of the generating field are emitted.
The intuitive picture of [24] was quantified by an analytical
strong-field theory [25] and substantiated by a large num-
ber of numerical calculations [26]. The application of the
recollision event as an intramolecular diffraction tool, to
probe the electronic structure and dynamics, is particularly
inviting in molecules. It requires, however, that the mole-
cule be prealigned.

Molecular alignment by moderately intense laser pulses
can be realized adiabatically [27] or nonadiabatically [28]
(see [29,30] for a recent and an early review, respectively)
but in the context of HHG the latter route presents major
advantages [5,8,10]. Here, a short (with respect to rota-
tional periods) pulse generates a broad rotational wave
packet via sequential angular momentum nonconserving
transitions. Such wave packets can be shown to align at a
controllable time delay with respect to the pulse peak and,
subsequent to dephasing, undergo a coherent revival pro-
cess [31]. In systems where the classical rotation is stable
(linear and symmetric top molecules), the initial alignment
is precisely reconstructed at multiples of the rotational
period, exhibiting partial revivals at system-dependent
fractions of the period.

The fascinating physics of HHG from nonadiabatically
aligned molecules, along with potential applications both

as a spectroscopy and as a control tool, has fueled a large
number of experiments on this topic within the past 2–
3 years [3–11]. Theoretically, much insight was generated
by a 2-scattering-centers model, wherein a diatomic mole-
cule is described as two point emitters located at the two
nuclei, leading to an interference pattern between electrons
diffracted from the two sources [13,14]. More recently,
considerable progress has been made on accurate descrip-
tion of the bound electronic wave function [19]. To date,
however, all studies focused entirely on the electronic part
of the time-dependent dipole, either neglecting the rota-
tions and assuming a fixed orientation of the molecule or
averaging the electronic dipole over a distribution of
aligned molecules. While both approaches are valuable,
neither can describe the experimentally observed time
dependence of the harmonic signal. Empirically it was
found that the observed structure follows in most cases
the expectation value of cos2�. In some cases, however,
depending on the molecule and on the harmonic order,
hsin22�i or a combination of both geometric functions
was found to correspond better to the observable [6,8].

One objective of the present work is to fill in the gap in
our understanding of HHG from aligned molecules by
deriving an analytical expression for the time evolution
of the observable. A second objective is to propose that
harmonic signals provide potentially more information
about molecular systems than what has been envisioned
so far, not only regarding the electronic structure, but also
regarding the rotational dynamics of aligned molecules. To
meet these objectives we derive a closed form expression
for the harmonic spectrum that properly accounts for the
rotational, as well as the electronic wave function, and
examine its structure subject to a single approximation.
The analytical solution provides explicitly the time depen-
dence of the harmonics, thus illustrating the origin of the
temporal structure observed experimentally and its depen-
dence on the harmonic order. It reinterprets observations
previously assumed to evolve as hcos2�i, showing that the
correct behavior is of the hcos4�i form. More interestingly,
it points to the molecular parameters that determine the
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temporal structure. Formulation of our theory in terms of
the density operator introduces the possibility of studying
HHG from aligned molecules in dissipative media (such as
dense gases) and simplifies calculations at nonzero rota-
tional temperatures. We expect our result to provide com-
plementary insights to previous numerical work in
application to existing experiments, which have focused
on linear systems. In addition, the present formulation
applies to arbitrary molecular symmetries and hence to
polyatomic systems and dynamical processes.

The rotational-electronic wave packet is written as
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where j0JMi � j0ijJMi, j ~kJcMci � j ~kijJcMci, j0i is the
electronic ground state, j ~ki denotes the electronic contin-
uum states, and Ip is the ionization potential. The j ~ki
incorporate the effect of the strong HHG pulse on the
electronic continuum and account for the journey of the
ionized electron in the field. The j0i can incorporate the
strong-field effect on the bound state, which amounts to a
gradual depletion, but neglect of this effect was shown to
be a successful approximation [25], as the continuum
carries most of the physics. J and M are the total angular
momentum and its projection onto the space-fixed z axis,
and a subscript c denotes the ion core indices. The expan-
sion coefficients CJM are the probability amplitudes of the
states j0JMi in the wave packet, CJM � h0JMj�i, and
similarly CJcMc

. � in Eq. (1) denotes time with respect to
the alignment pulse whereas t denotes time with respect to
the HHG pulse. The CJM��� are determined by the align-
ment pulse and the molecular rotational constants and are
not modified by the HHG pulse [32]. They contain the
information about the rotational wave packet dynamics and
evolve on the time scale of the wave packet rotations. The
CJcMc
� ~k; t� contain the continuum dynamics induced by the

HHG field and evolve on the electronic time scale.
Equation (1) applies to the case of a linearly polarized
alignment pulse and a linear molecule that is sufficiently
heavy to behave as a rigid rotor on the time scale of
relevance. This has been the case in experimental studies
of HHG from nonadiabatically aligned molecules pub-
lished to date [3–11]. The general case is addressed else-
where. The harmonic spectrum is given as the Fourier
transform of the component of the time-dependent dipole
moment along the direction of polarization of the observed
harmonics, denoted n̂,
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where the continuum coefficients are determined through
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EJc is the rotational energy associated with jJcMci, and Ek
is the electronic energy of the continuum. Using Eqs. (2)
and (3), neglecting EJc with respect to Ip (EJc 	 10�5Ip for
O2, for instance), and using the closure relation,
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one obtains
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where the electric field is written as ~"�t� � "̂"�t� and R̂
denote the Euler angles of rotation of the molecular
axis with respect to the polarization vector. The time-
dependent phase in Eq. (5) is S�t; t0� �

R
t
t0 dt

00�Ek00 � Ip�

and ~k0 � ~k�t0�, ~k00 � ~k�t00�. [Within the familiar strong-field

approximation, ~k0 � ~k� ~A�t� � ~A�t0�, where ~A�t� �
�
R
t ~"�t0�dt0.] Equation (5) can be recast as

 h��t�j ~� � n̂j��t�iT �
Z
dR̂�T�R̂; ��Felect�R̂; t� � c:c:;

(6)

where �T is the rotational density operator at time �, which
is understood to have been propagated by the Liouville
equation from an initial rotational distribution at tempera-
ture T and incorporates the effects of the aligning pulse.
Explicitly,

 �T�R̂; �� �
��������X
JM

CJM���YJM�R̂�
��������2
; (7)

and
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Z
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�
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Equation (6) converts the problem into a product of an
electronic factor and a rotational factor, integrated over
angles, where the rotational factor serves as a weight
function for electronic overlap elements computed at fixed
orientations of the molecular axis with respect to the
polarization axis. Equation (6) is physically transparent
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and intuitively expected. It was taken as an ansatz in
Refs. [16,17], but the rigorously derived rotational factor
of Eq. (7) differs from the one in [16,17], as the latter
confines the molecular rotation to a plane. Equations (5)
and (6) amount to a separation of the dipole into an
electronic and a rotational part.

To derive an analytical expression for the time depen-
dence of the harmonics and provide insight into their
information content, we proceed by exploring the angular
dependence of the electronic factor. For simplicity we
consider first the case where the HHG field is polarized
parallel to the alignment field, and the harmonic signal
measured is polarized along the fields polarization axis.
Expanding the continuum state in partial waves in terms of
the laboratory frame and transforming into the molecular
frame (in which the bound state is computed) we have

 h ~Qj ~k�t�i �

����
2

�

s X
lmlkl

ilDl�
klml
�R̂�Y�lml

�k̂��lkl�Ek;
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�

����
2

�
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lkl

ilYlkl�R̂��lkl�Ek;
~Q; t�; (9)

where ~Q denotes the electronic coordinates with respect to
the molecular frame, l is the electronic angular momentum
with projections ml and kl onto the polarization and mo-
lecular axes, respectively, and �lkl�Ek;

~Q; t� is the corre-
sponding partial wave. In deriving the second equality we
assume k̂ k "̂, that is, the momentum of the strong-field
driven electron is along the polarization vector. This as-
sumption is not necessary but simplifies the notation and is
consistent with stationary state integration results [21].
Thus,
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(10)

where the purely electronic function Fk�?� is given as
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Equation (11) has the same physical content and mathe-
matical structure as the time-dependent dipole moment
evaluated in studies of HHG from atoms [25,26]. Here
the strong-field theory of [25] has been particularly popu-
lar, due to its insight and computational simplicity, but
recent work has advanced the description of the ground
state [19]. The recombination matrix element in this term,
the prefactor to the time integral, contains the information
about the scattering of the electron from the atomic con-
stituents and incorporates the interference of electron
waves that may arise from the availability of several scat-
tering centers, discussed in [3–19,21,22]. The temporal
factors account for the journey of the driven electron
subject to the field, discussed, e.g., in [25]. It is important
to note that Eqs. (10) and (11) can be computed with any
method of describing the bound and continuum electronic
wave functions. Although in principle the l summation is
infinite, in practice the dipole element with the ground
electronic state favors the lowest l waves. The partial
wave dominating the sum depends, however, on the sym-
metry of the ground state.

For homonuclear diatomics, l, l0 are either even or odd
and for most ground states the projection of the electronic
angular momentum onto the molecular axis vanishes. In
this case the product of spherical harmonics in the first
term of Eq. (10) is Yl0Y�l00 �

P
nfncos2n�, whereas the

same product in the second term is Yl
1Y�l0
1 �

sin2�
P
ng


n cos2n�. For ground states with 
1 projection

of the electronic angular momentum, such as O2, the two
series are reversed. For a�g orbital the parallel component,
�k in Eq. (10), typically dominates, and one expects the
harmonic signal to behave as a rapidly converging power
series in cos2�. For the specific case of N2, we find nu-
merically that the lowest order term, cos2�Fk�1; 1; 0; t�,
dominates. It follows that the HHG signal of N2 evolves
rigorously as hcos4�i���. This result reinterprets a large
number of observations of the HHG from aligned N2,
where the time dependence was fitted to hcos2�i���. We
note, however, that (apart from a shift of the baseline)
hcos4�i��� and hcos2�i��� are very similar. The above
analysis indicates that, for a �g orbital, both parallel and
perpendicular components in Eq. (10) are non-negligible,
and hence the pattern would vary with the incoming elec-
tron energy, reflecting the balance between at least two
terms of different time dependence. For O2 we find nu-
merically that a term proportional to hcos4�sin2�i plays a
significant role, while the lowest order term allowed is
/ hcos2�sin2�i. Numerical results of Eq. (10), shown in
Fig. 1, compare well with the observations of [6,8]. Our
analysis explains why for N2 all previous numerical results,
including ones based on crude description of the electronic
dynamics, were found in good agreement with measure-
ments, whereas for O2 it proved more difficult to reproduce
observations. It explains also the marked sensitivity of the
signal to the harmonic order in the O2 case and its insensi-
tivity in the N2 case. Finally, our results can be used to
predict the time evolution of HH generated from different
classes of linear molecules ahead of detailed calculations.

Equations (10) and (11) suggest the ability of HH signals
to trace different moments of the alignment, depending on
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the harmonic order and the field parameters. We remark
that the conventional measure of wave packet alignment,
hcos2�i, probes only second order (J ! J
 2) rotational
coherences, but strong-field-aligned wave packets contain
the much richer higher order coherences. HHG spectra
may thus provide new information about the evolution of
rotational wave packets, which is silent in conventional
observables. It is worth noting that rotational coherences
contain valuable information about both the molecular
system [33] and the medium in which it evolves [34].

In summary, we derived a rigorous framework for cal-
culation of HH signals from aligned molecules that ac-
counts for both the electronic and the rotational wave
packet dynamics as well as for their correlation. The
former was intensively discussed in the recent literature
whereas the latter is new and fascinating. By providing a
closed form expression for the time dependence of the
signal, the formalism explains the observations of a large
number of experiments over the past 3 years. Interestingly,
it points to the information content of such experiments
regarding the rotational coherences of the target molecule,
hence suggesting a broad class of new applications of
HHG.
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FIG. 1 (color online). The computed 23rd harmonic of N2

(solid line) and O2 (dashed line) at a rotational temperature of
T � 30 K. The alignment pulse is Gaussian with duration 250 fs
and a peak intensity of 2:4� 1013 W cm�2, and the HHG peak
intensity is 2:0� 1014 W cm�2 at 800 nm.

PRL 99, 113901 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 SEPTEMBER 2007

113901-4


