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We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is
superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived
electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting
dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an
effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive
analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms.
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Because of their widely tunable properties, ultracold
atomic gases provide the ideal playground to model and
study complex many body systems. The interatomic inter-
action can be tailored using Feshbach resonances and
magnetic, optical, and electric fields can be applied in
order to generate virtually any external potential. Famous
examples for the versatility are the demonstration of the
Mott insulator to superfluid phase transition of ultracold
atoms in an optical lattice [1], the BEC-BCS crossover in a
gas of 6Li [2], or the Kosterlitz-Thouless phase transition
studied within a two-dimensional Bose-Einstein conden-
sate (BEC) [3]. Traditionally, there is a great interest in
studying systems with reduced spatial dimensions, such as
the latter example. One paradigm is constituted by the
work of Lieb and Liniger who were the first to solve the
system of pointlike interacting bosons in one dimension
using Bethe’s ansatz [4]. In the limit of an infinitely strong
interparticle interaction strength, a so-called Tonks-
Girardeau gas emerges [5].

In addition to gases of ground state atoms, particularly
Rydberg gases represent excellent systems to study the
influence of a strong interparticle interaction on the dy-
namics of many-particle systems. Because of the large
displacement of the ionic core and the valence electron,
Rydberg atoms can develop a large electric dipole moment
leading to a strong and long-ranged dipole-dipole interac-
tion among them [6]. However, unlike ground state atoms
Rydberg atoms suffer from radiative decay and hence the
mutual interaction time is limited by the lifetime of the
electronically excited state. Even still, in so-called frozen
Rydberg gases, where the time scale of the atomic motion
is much longer than the radiative lifetime, exciting effects
like the dipole blockade [7] or resonant population transfer
[8] have been observed.

Several works have focused on the important issue of
trapping Rydberg atoms based on electric [9], optical [10],
or strong magnetic fields [11]. Because of the high level
density and the strong spectral fluctuations with spatially
varying fields, trapping or manipulation in general is a

delicate task. This holds particularly for the case where
both the center of mass and internal motion are of quantum
nature. Moreover, the inhomogeneous external fields lead
to an inherent coupling of these motions. Addressing this
regime, it has been recently theoretically shown that
Rydberg atoms can be tightly confined and prepared in
long-lived electronic states in a magnetic Ioffe-Pritchard
(IP) trap [12] which can be miniaturized using so-called
atom chips [13]. Here we use the IP configuration as a
key ingredient in order to ‘‘prepare’’ and study a one-
dimensional (1D) Rydberg gas. Specifically, we propose
a modified IP trap, a magnetoelectric trap, which offers
confining potential energy surfaces for the atomic center of
mass (c.m.) motion in which the atoms possess an oriented
permanent electric dipole moment. We derive analytical
expressions for the dipole-dipole interaction among
trapped Rydberg atoms and estimate below which
Rydberg atom density a 1D Rydberg gas is expected to
form. Moreover, we estimate the lifetime of such a gas.

Proceeding along the lines of Refs. [12,14], we employ a
two-body approach in order to model an alkali metal atom
in a Rydberg state. We assume the single valence electron
and the ionic core (mass Mc) to interact via a pure
Coulomb potential. While the inclusion of the fine-
structure and quantum defects can be readily done, it turns
out not to be necessary for high angular momentum elec-
tronic states in the regime we are focussing on [12]. The IP
field configuration is given by B�x� � Be3 � Blin�x� with
Blin�x� � G�x1e1 � x2e2� and the vector potential reads
A�x� � Ac�x� �Alin�x� with Ac�x� � B

2 �x1e2 � x2e1�

and Alin�x� � Gx1x2e3, where B and G are the Ioffe field
strength and the gradient, respectively. In addition, we
apply a homogeneous electric field pointing in the x1

direction of the laboratory frame F � Fe1. After introduc-
ing relative and c.m. coordinates (r and R) and employing
the unitary transformation U � exp�i B2 e3 � r 	R�, the
Hamiltonian describing the Rydberg atom becomes
(atomic units are used unless stated otherwise)
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HIPE � HA �Ac�r� 	 p�
P2

2Mc
��N 	B�R�

� F 	 r��e 	B�R� r� �Alin�R� r� 	 p: (1)

Here, HA � p2=2� 1=r is the Hamiltonian of a hydrogen
atom possessing the energies En � �

1
2n
�2. The second

term denotes the energy of the electron in the homogene-
ous Ioffe field due to its orbital motion. The following two
terms of HIPE describe the motion of a pointlike particle
possessing the magnetic moment�N in the presence of the
field B. The magnetic moments are connected to the
electronic spin S and the nuclear spin � according to�e �
�S and �N � ��gN=2Mc��, with gN being the nuclear g
factor. We neglect the term involving �N in the following
due to the large nuclear mass. The electric field interaction,
which in case of a neutral two-body system couples only to
the relative coordinates, gives rise to the fifth term. The last
two terms of HIPE are spin-field and motionally induced
terms coupling the electronic and c.m. dynamics. We focus
on a parameter regime which allows us to neglect the
diamagnetic interactions [12].

In order to find the stationary states of the Hamiltonian
(1), we assume that neither the magnetic nor the electric
field causes couplings between electronic states with dif-
ferent principal quantum number n. In this case we can
consider each n manifold separately and may represent the
Hamiltonian (1) in the space of the 2n2 states which span
the nmanifold under investigation. The parameter range in
which this approximation is valid has been thoroughly
discussed in Refs. [12,15]. Because of the translational
symmetry of the IP and the electric field, the axial c.m.
motion along Z can be separated from the transversal
motion in the X-Y plane. If we omit the energy offset En
and introduce scaled c.m. coordinates (R! ��1=3R with
� � GMc) while scaling the energy unit with �scale �

�2=3=Mc, we arrive at the Hamiltonian

 H �
P2

1 � P
2
2

2
�� 	G� ��2=3Mc�Hm �H e�: (2)

This Hamiltonian governs the transversal c.m. as well as
the electronic dynamics and involves the effective mag-
netic field G � Xe1 � Ye2 � ��2=3McBe3. The symbols
�, Hm, and H e are the 2n2-dimensional matrix repre-
sentations of the operators 1

2 �L� 2S�, Hm � Alin�r� 	 p�
Blin�r� 	 S, and the electric field interaction He � Fx, re-
spectively (we introduced L � r� p). A thorough inter-
pretation of this Hamiltonian in the absence of H e is pro-
vided in Ref. [12]. In order to solve the corresponding
Schrödinger equation we employ an adiabatic approach.
To this end a unitary transformation U�X; Y� which diago-
nalizes the last two (matrix) terms of the Hamiltonian is ap-
plied, Uy�X;Y��� 	G���2=3Mc�Hm�H e��U�X;Y��
E��X;Y�. Since U�X; Y� depends on the c.m. coordinates,
the transformed kinetic energy term involves nonadiabatic
(off-diagonal) coupling terms which can be neglected in
our parameter regime [12]. We are thereby led to a set of

2n2 decoupled differential equations governing the adia-
batic c.m. motion within the individual two-dimensional
energy surfaces E��X; Y�; i.e., the surfaces E��X; Y� serve
as potentials for the c.m. motion of the atom. In Fig. 1 we
present intersections along the X direction of such potential
surfaces for B � 10 G, G � 10 T m�1, and n � 30 in the
case of 87Rb. For zero electric field strength (dashed lines),
the potential curves are organized in groups which are
energetically well separated by a gap of ��2=3McB �
89:9 MHz. The uppermost surface is nondegenerate and
provides an approximately harmonic confinement with a
trap frequency of ! � G

������������������
n=2BMc

p
� 13:9 kHz corre-

sponding to 0:1 �K. The two adjacent lower surfaces are
degenerate and also approximately harmonic. As soon as
an electric field is applied, all surfaces are shifted consid-
erably in energy. This is visible from the solid curves in
Fig. 1 for which an electric field of strength F �
5:14 V m�1 is applied. The shapes of the potentials are
barely affected by the electric field such that Rydberg
states which were trapped in a pure IP configuration remain
confined also in the magnetoelectric trap. Moreover, add-
ing the electric field leads to nontrivial effects: The second
and third surface, which were almost degenerate in the

FIG. 1 (color online). Potential energy surfaces of the c.m.
motion of a 87Rb atom (n � 30) in an IP trap with B�10 G,
G�10 Tm�1. Dashed lines: F�0; solid lines: F�5:14 Vm�1.
An overview of the seven energetically highest potential curves
is shown in (a). Magnified views of the uppermost (b),(c) and
next lower ones (d),(e) are also provided. The range of the X
coordinate, corresponding to 2:1 �m, is the same for each
subfigure (a)–(e). The total field configuration is sketched
in (f) where the circles depict the locations of the minima of
the uppermost (big circle) and the two adjacent lower-lying
(small circles) c.m. surfaces. The magnetic field lines are in-
dicated in gray while the electric field is sketched by black
arrows.
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absence of the electric field, are now shifted in opposite
ways along the x1 direction. All surfaces shown provide a
harmonic confinement with a trap frequency ! also in the
x2 direction. We remark that the chosen parameter set does
not generate an extreme constellation; hence, an even
stronger confinement can be achieved without invalidating
the applied approximations [12].

Let us now investigate the electronic properties of a
Rydberg atom being trapped in the uppermost potential
surface. For F � 0 and sufficiently large values of B, this
surface is formed almost exclusively by the highest pos-
sible electronic angular momentum state, i.e., l � n� 1
[12]. If F is increased, electronic states with smaller l will
be inevitably admixed to the electronic state belonging to
this energy surface. An interesting property to investigate
is hence the electric dipole moment of trapped Rydberg
atoms: While for F � 0 the electronic states are almost
pure parity eigenstates and therefore exhibit almost no
electric dipole, the admixture of lower l states to the upper-
most surface in the presence of the field is expected to give
rise to a nonvanishing expectation value of the dipole
operator. Indeed, this becomes evident in Fig. 2 where
the uppermost potential surface and the three components
of the expectation value of the electric dipole operator
D�R� � hri�R� are shown (same parameters as in
Fig. 1). It can be clearly seen that a permanent dipole
moment is established whose dominant contribution points
along the electric field vector.

In order to study the dependence of D�R� on the field
strengths F and B as well as on the degree of elec-
tronic excitation, we use perturbation theory. In the limit
of a large Ioffe field strength B the unitary transforma-
tion which diagonalizes the Hamiltonian (2) can be writ-
ten explicitly as Ur � e�i��Lx�Sx�e�i��Ly�Sy� with sin� �

�YjGj�1, cos� �
���������������������
jGj2 � Y2

p
jGj�1, sin� � X�jGj2 �

Y2��1=2, and cos� � ��2=3McB�jGj2 � Y2��1=2. This
transformation rotates the z axis into the local magnetic
field direction where � and � denote the rotation angles.
Using this result we find up to first order in F=B the electric
dipole moment (in atomic units)

 D �R� �
9

2

F
B
n2�n� 1�

cos�
sin� sin�
sin� cos�

0
@

1
A: (3)

We note that D�R� scales proportional to the third power of
the principal quantum number and can therefore gain a
significant magnitude even if the ratio F=B is small. Good
agreement of Eq. (3) with the calculated data presented in
Fig. 2 is found; e.g., in the vicinity of the minimum of the
potential surface (X � Y � 0) we find an exact value of
Dx � 270 whereas the expression (3) yields 276. For the
remaining components Eq. (3) yields zero at the origin. For
smaller ratios of F=B, even better agreement can be
achieved.

Because of the dependence on the angles � and �, the
dipole moment depends weakly on the quantum state of the

c.m. motion. However, since the field configuration is
translationally symmetric the electric dipole moment is
independent of the Z position of the Rydberg atoms in
the trap. If we now consider two transversally confined
atoms in the same trap at the longitudinal positions ZA and
ZB, we can write for their dipole-dipole interaction
 

VD�RA;RB� �
1

jRA �RBj
3 �D�RA� 	 D�RB�

� 3�D�RA� 	 e��D�RB� 	 e��



D�RA� 	 D�RB�

jZA � ZBj
3 ; (4)

where e denotes the interparticle unit vector. The approxi-
mation in Eq. (4) holds due to the orientation of the dipoles
and the assumption that jZA � ZBj is large compared to the
transversal oscillator length of the trap. These conditions
moreover ensure a minimal coupling of the transversal and
longitudinal motion. Using this approximation one can
estimate the interaction energy of one atom being part of
an infinite atomic chain with an interparticle spacing a.
One finds

 Eint � 2
D2�0�

a3

X1
k�1

k�3 �
81

2a3

F2

B2 n
4�n� 1�2��3� (5)

with the Riemann zeta function ��x�. Here we have ap-
proximated D2�R� 
 D2�0� since the dipole moment
barely varies in the vicinity of X � Y � 0. If the interac-
tion energy Eint is smaller than the transversal trap fre-
quency!, we can assume that the interacting atoms remain
in the transversal ground state: This is considered the 1D
regime. The linear density below which a 1D Rydberg gas
is expected to form is then given by

 N1D �

����
B
p

3

�
3

�������
Mc

2

s
F2

G
��3�n7=2�n� 1�2

�
�1=3

: (6)

Above this density, excited transversal c.m. states might be
populated resulting in a quasi-1D Rydberg gas which is
certainly of interest on its own. For our parameter set, we

FIG. 2 (color online). (a) Uppermost electronic potential sur-
face for the c.m. motion of 87Rb in the n � 30 multiplet and the
parameters used in Fig. 1. (b)–(d) Components of the electronic
dipole moment D�R� in atomic units. One recognizes the clear
alignment of the electric dipole moment along the electric field
vector. The numerically calculated values of D�R� are to good
accuracy reproduced by Eq. (3).
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obtain a minimal interparticle spacing a � 43 �m; hence,
a chain of 1 mm in length contains 23 particles. This
density can be further increased by either increasing the
magnetic field gradient and/or decreasing the electric
field strength: At B � 10 G, G � 100 T m�1, and F �
0:514 V m�1 a chain of the same length would contain
230 Rydberg atoms.

Finally, the issue of radiative decay has to be addressed.
Since the electric field admixes merely a few l � m states
(l < n� 1) to the electronic wave function of the upper-
most surface, its circular character remains dominant re-
sulting in one prevalent decay channel. For an atom being
confined to the energy surface which is shown in Fig. 2, we
have calculated a lifetime of � 
 2:1 ms which is in good
agreement with the corresponding field-free result ��n; n�
1� 
 �3=2c2��n=��5 [16]. Corrections to this bare decay
rate are found to be of the order of �F=B�2n3. Because of
the scaling proportional to n5, the lifetime can be signifi-
cantly enhanced by exciting to a higher principal quantum
number n. In addition, it can be further prolonged by
establishing an adapted experimental setup which inhibits
the electromagnetic field mode at the dominant transition
frequency [17]. At the same time, a cryogenic environment
will diminish the undesirable effect of stimulated (de)ex-
citation by blackbody radiation. The time scale of the
dynamics of the Rydberg chain on the other hand depends
on the field strengths via the dipole moment and the
interparticle spacing: A harmonic approximation of the
dipole-dipole interaction yields the one-particle oscillator

frequency !dd �
�������������������������������
24D2�0�=Mca

5
p

. As an example, the
field configuration B � 10 G, G � 100 T m�1, and F �
0:514 V m�1 yields a time scale of less than 1 ms.

Let us now briefly comment on the realization of such a
Rydberg gas which is certainly a challenging experimental
task. One could start from an extremely dilute ultracold
atomic gas prepared in an elongated IP trap. For trans-
ferring ground state atoms to high angular momentum
Rydberg states, techniques such as crossed electric and
magnetic fields or rotating microwave fields can be em-
ployed; see Ref. [18] and references therein. For low
angular momentum states, trapping and the formation of
a permanent dipole represent still an open question since
quantum defects, spin-orbit coupling, and reduced radia-
tive lifetimes have to be taken into account. During the
preparation, the excitation lasers have to be focused such
that Rydberg atoms emerge only at positions separated by
the interparticle spacing a which is required to meet the
criterion (6). Since a is in the order of several micrometers,
which can be resolved optically, this should be feasible.
The large value of a moreover ensures that the mutual
ionization due to the overlap of the electronic clouds of
two atoms does not occur. For our circular states with n �
30, the atomic extension can be estimated by hri 
 n2 �
48 nm and is thus orders of magnitude smaller than the
corresponding value of a for our field configuration. In

order to probe the dynamics of the resultant Rydberg chain,
one can field ionize the atoms: From the spatially resolved
electron signal a direct mapping to the positions of the
Rydberg atoms should be possible.

In conclusion, we demonstrated that in a magnetoelec-
tric trap Rydberg states can be confined in electronic states
exhibiting a permanent electric dipole moment of hundreds
of Debyes. Analytical expressions for the density which is
required to enter the 1D regime were calculated. Moreover,
we pointed out that the lifetime of the Rydberg states is
sufficiently long to probe the dynamics of the interacting
gas. This regime is complementary to the well-studied
frozen Rydberg gases where mechanical atom-atom inter-
action effects can hardly be probed. The potential of the
proposed magnetoelectric trap is by far not entirely ex-
hausted; e.g., one could think of using the double-well
structure which is visible in Fig. 1(d) in order to realize
two coupled dipolar Rydberg chains.
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