
Isospin Mixing in the Nucleon and 4He and the Nucleon Strange Electric Form Factor

M. Viviani,1 R. Schiavilla,2,3 B. Kubis,4 R. Lewis,5 L. Girlanda,1 A. Kievsky,1 L. E. Marcucci,1 and S. Rosati1
1INFN, Sezione di Pisa, and Department of Physics, University of Pisa, I-56127 Pisa, Italy

2Jefferson Lab, Newport News, Virginia 23606, USA
3Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
4HISKP (Theorie), Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany

5Department of Physics, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2
(Received 15 March 2007; published 14 September 2007)

In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating
asymmetry measured in 4He� ~e; e0�4He experiments, it is crucial to have a reliable estimate of the mag-
nitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this
issue in the present Letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory,
while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis
of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the
asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent mea-
surements reported by the HAPPEX Collaboration at Jefferson Lab, these contributions are of comparable
magnitude to those associated with strangeness components in the nucleon electric form factor.
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One of the challenges of modern hadronic physics is to
determine, at a quantitative level, the role that quark-
antiquark pairs, and in particular s�s pairs, play in the
structure of the nucleon. Parity-violating (PV) electron
scattering from nucleons and nuclei offers the opportunity
to investigate this issue experimentally. The PVasymmetry
(APV) arises from interference between the amplitudes due
to exchange of photons and Z-bosons, which couple, re-
spectively, to the electromagnetic (EM) and weak neutral
(NC) currents. These currents involve different combina-
tions of quark flavors, and therefore measurements of APV,
in combination with electromagnetic form factor data for
the nucleon, allow one to isolate, in principle, the electric
and magnetic form factors Gs

E and Gs
M, associated with the

strange-quark content of the nucleon.
Experimental determinations of these form factors have

been reported recently by the Jefferson Lab HAPPEX [1]
and G0 [2] Collaborations, Mainz A4 Collaboration [3],
and MIT-Bates SAMPLE Collaboration [4]. These experi-
ments have scattered polarized electrons from either un-
polarized protons at forward angles [1–3] or unpolarized
protons and deuterons at backward angles [4]. The result-
ing PVasymmetries are sensitive to different linear combi-
nations of Gs

E and Gs
M as well as the nucleon axial-vector

form factor GZ
A. However, no robust evidence has emerged

so far for the presence of strange-quark effects in the
nucleon.

Last year, the HAPPEX Collaboration [5,6] at Jefferson
Lab reported on measurements of the PV asymmetry in
elastic electron scattering from 4He at four-momentum
transfers of 0:091 �GeV=c�2 and 0:077 �GeV=c�2.
Because of the J� � 0� spin-parity assignments of this
nucleus, transitions induced by magnetic and axial-vector
currents are forbidden, and therefore these measurements
can lead to a direct determination of the strangeness elec-

tric form factor Gs
E [7,8], provided that isospin-symmetry-

breaking (ISB) effects in both the nucleon and 4He, and
relativistic and meson-exchange (collectively denoted with
MEC) contributions to the nuclear EM and weak vector
charge operators, are negligible. A realistic calculation of
these latter contributions [8] found that they are in fact tiny
at low momentum transfers. The goal of the present Letter
is to provide a quantitative estimate of ISB corrections to
the PV asymmetry.

In the following analysis, we only need to consider the
time components of the EM current and vector part of the
weak NC current—the weak vector charge referred to
above [8]. We account for isospin symmetry breaking in
both the nucleon and �-particle. We first discuss it in the
nucleon.

Ignoring radiative corrections, the EM and weak vector
charge operators can be decomposed as j��0

EM � j�0� � j�1�

and j��0
NC � �4s2

Wj
�0� � �2� 4s2

W�j
�1� � j�s�, where j�0�

and j�1� are, respectively, the isoscalar and isovector com-
ponents of the EM charge operators, j�s� is the (isoscalar)
component due to strange-quark contributions, and s2

W �
sin2�W contains the Weinberg mixing angle. In terms of
quark fields u, d, s, these charge operators read: j�0� �
� �u�0u� �d�0d� 2�s�0s�=6, j�1� � � �u�0u� �d�0d�=2, and
j�s� � �s�0s. In a notation similar to that adopted by the
authors of Ref. [9], we introduce form factors correspond-
ing to the following matrix elements of j�0� and j�1� be-
tween proton (p) and neutron (n) states:

 hpjj�0�jpi ! G0
E�Q

2� �G;E�Q
2�; (1)

 hnjj�0�jni ! G0
E�Q

2� �G;E�Q
2�; (2)

 hpjj�1�jpi ! G1
E�Q

2� �G16
E�Q

2�; (3)
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 hnjj�1�jni ! �G1
E�Q

2� �G16
E�Q

2�; (4)

where the arrow indicates that only leading contributions
are listed in the nonrelativistic limit of these matrix ele-
ments. While higher-order corrections associated with the
Darwin-Foldy and spin-orbit terms are not displayed ex-
plicitly in the equations above, they are in fact retained in
the calculations discussed later in the present work. The
form factors G;E�Q

2� and G16
E�Q

2� parameterize ISB effects
in the nucleon states. We also introduce the strange form
factor via

 hpjj�s�jpi � hnjj�s�jni ! Gs
E�Q

2�; (5)

where here ISB terms in the p, n states are neglected.
Contributions from sea quarks heavier than strange are
also ignored.

In terms of the experimental proton and neutron electric
form factors, derived from the matrix elements
hpjj��0

EM jpi ! Gp
E�Q

2� and hnjj��0
EM jni ! Gn

E�Q
2�, we ob-

tain

 G0
E � �G

p
E �G

n
E�=2�G16

E; (6)

 G1
E � �G

p
E �G

n
E�=2�G;E; (7)

where the Q2 dependence in these and the following two
equations is understood. In the limit in which the p, n states
form an isospin doublet, the form factors G;E and G16

E
vanish, and G0

E and G1
E reduce to the standard isoscalar

and isovector combinations of the proton and neutron
electric form factors. The proton and neutron vector NC
form factors follow from the expression for j��0

NC given
earlier, i.e.,

 Gp;Z
E � �1� 4s2

W�G
p
E �G

n
E � 2�G16

E �G
;
E� �G

s
E; (8)

 Gn;Z
E � �1� 4s2

W�G
n
E �G

p
E � 2�G16

E �G
;
E� �G

s
E: (9)

We now turn to the nuclear charge operator. At low
momentum transfer, it is simply given by [8]

 ��EM��q��Gp
E�Q

2�
XZ
k�1

eiq�rk�Gn
E�Q

2�
XA

k�Z�1

eiq�rk ; (10)

where Z is the number of protons, A� Z the number of
neutrons, and q is the three-momentum transfer. An equa-
tion similar to Eq. (10) holds for the weak vector charge
operator, but with Gp

E and Gn
E being replaced, respectively,

by Gp;Z
E and Gn;Z

E . It is also convenient to define the charge
operators:

 ��0��q� �
Gp
E �G

n
E

2

XA
k�1

eiq�rk ; (11)

 ��1��q� �
Gp
E �G

n
E

2

�XZ
k�1

eiq�rk �
XA

k�Z�1

eiq�rk
�
; (12)

from which

 ��EM��q� � ��0��q� � ��1��q�; (13)

 ��NC��q� � �4s2
W�
�EM��q� �

2G16
E �G

s
E

�Gp
E �G

n
E�=2

��0��q�

� 2��1��q� �
2G;E

�Gp
E �G

n
E�=2

��1��q�; (14)

where again theQ2 dependence of the nucleon form factors
has been suppressed here and in the following for brevity.
The relations above lead to the definition of the following
nuclear form factors: h4Hej��a��q�j4Hei=Z � F�a��q� with
a � EM, NC, 0, 1, having the normalizations F�EM��0� �
F�0��0� � 1 and F�1��0� � 0. The form factor F�1��q� is
very small because 4He is predominantly an isoscalar state.
Using standard techniques, it is possible to show that
APV � F

�NC��q�=F�EM��q� (see Ref. [7], for example).
Thus, ignoring second order terms like G;F�1��q�, we
obtain for the PV asymmetry measured in ( ~e, e0) elastic
scattering from 4He:

 APV �
G�Q

2

4��
���
2
p

�
4s2

W � 2
F�1��q�

F�0��q�
�

2G16
E �G

s
E

�Gp
E �G

n
E�=2

�
; (15)

where G� is the Fermi constant as determined from muon
decays, and here s2

W is taken to incorporate radiative cor-
rections. The terms G16

E and F�1��q�=F�0��q� are the contri-
butions to APV, associated with the violation of isospin
symmetry at the nucleon and nuclear level, respectively.

The most accurate measurement of the PV asymmetry,
recently reported in Ref. [6] at Q2 � 0:077 �GeV=c�2,
gives APV � 	�6:40
 0:23�stat� 
 0:12�syst�� ppm,
from which, after inserting the values for G� �

1:166 37� 10�5 GeV�2, � � 1=137:036, and s2
W �

0:2286 (including its radiative corrections [7]) in
Eq. (15), one obtains

 � � �2
F�1��q�

F�0��q�
�

2G16
E �G

s
E

�Gp
E �G

n
E�=2

� 0:010
 0:038 (16)

atQ2�0:077 �GeV=c�2. This result is consistent with zero.
In the following, we discuss the estimates for the ISB
corrections first in the nucleon and then in 4He, respec-
tively G16

E�Q
2� and F�1��q�, at Q2 � 0:077 �GeV=c�2 (cor-

responding to q � 1:4 fm�1).
For G16

E�Q
2� we use the estimate obtained in Ref. [9]

adapted to our conventions, combining a leading-order
calculation in chiral perturbation theory with estimates
for low-energy constants using resonance saturation.
Collecting the various pieces, we find
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G16
E�Q

2���
g2
AmN�m

F2
�

�
M�

mN
� ��0��Q

2��4 ��3��Q
2��

�
Q2

2m2
N

�
���Q2��

M�

mN
� ��0��Q

2��5 ��3��Q
2��

�
1

16�2

�
1�2log

M�

MV
�
���v�6�M�

2mN

���

�
g!F���!Q

2

2MV�M
2
V�Q

2�2

�
1�

�!M
2
V

4m2
N

�
; (17)

where the loop functions �, ��0=3 are given explicitly in
Ref. [9], along with the precise definitions of the various
coupling constants. The chiral loop contributions in
Eq. (17) scale with the neutron-proton mass difference
�m, while the resonance part is proportional to the ��
! mixing angle ��!. We refer to Ref. [9] for a detailed
discussion of the range of numerical values for the vector-
meson coupling constants and only show the resulting band
for G16

E�Q
2� in Fig. 1. At the specific kinematical point of

interest Q2 � 0:077 �GeV=c�2, we find G16
E�Q

2� �
�0:0017
 0:0006, and with Gp

E�Q
2� � 0:799 and

Gn
E�Q

2� � 0:027 [10], we obtain�2G16
E=	�G

p
E �G

n
E�=2� �

0:008
 0:003 at Q2 � 0:077 �GeV=c�2.
We now turn to the nuclear ISB corrections. An approxi-

mate calculation of the ratio F�1��q�=F�0��q� was carried
out more than a decade ago [11], by (i) taking into account
only the isospin admixtures induced by the Coulomb in-
teraction, (ii) constructing a T � 1 J� � 0� breathing
mode excitation based on a plausible ansatz, and (iii)
generating the relevant T � 1 component in the 4He
ground state in first order perturbation theory. The calcu-
lated value was found to be rather small, and it produced a
less than 1% correction with respect to the 4s2

W term in
Eq. (15) at low Q2.

Since that pioneering study, significant progress has
occurred on several fronts. First, there now exist a number
of accurate models of nucleon-nucleon (NN) potentials
[12–16] which include explicit ISB induced by both the
strong and electromagnetic interactions. These ISB terms
have been constrained by fitting pp and np elastic scatter-
ing data. It is now an established fact that a realistic study
of 4He, and in fact light nuclei [17], requires the inclusion
of three-nucleon (NNN) potentials in the Hamiltonian.
While these are still not well known, the models most
commonly used in the literature [17–20] do not contain
ISB terms. The strength of the latter, however, is expected
to be tiny.

Second, several accurate methods have been developed
to compute 4He wave functions starting from a given
realistic nuclear Hamiltonian [21]. In these calculations,
T > 0 components are generated nonperturbatively. The
T � 1 percentage in the 4He wave function is typically
found to be of the order of 0.001%.

In this Letter, we use the hyperspherical harmonic (HH)
expansion method to compute the 4He wave function [22–
24]. In order to have an estimate of the model dependence,
we consider a variety of Hamiltonian models, including
(i) the Argonne v18 NN potential [13] (AV18), (ii) the
AV18 plus Urbana-IX NNN potential [18] (AV18/UIX),
(iii) the CD Bonn [14] NN plus Urbana-IXb NNN poten-
tials (CDB/UIXb), and (iv) the chiral N3LO [15] NN
potential (N3LO). The Urbana UIXb NNN potential is a
slightly modified version of the Urbana UIX (in the UIXb,
the parameter U0 of the central repulsive term has been
reduced by the factor 0.812), designed to reproduce, when
used in combination with the CD Bonn potential, the
experimental binding energy of 3H. The binding energies
B and PT�1 percent probabilities obtained with the AV18,
AV18/UIX, CDB/UIXb, and N3LO are, respectively,
B � �24:21; 28:47; 28:30; 25:38� MeV (to be compared
with an experimental value of 28.30 MeV) and PT�1 �
�0:0028; 0:0025; 0:0020; 0:0035�. These results are in
agreement with those obtained with other methods (for a
comparison, see Ref. [23]).

The form factors F�0��q� and F�1��q�, calculated with the
AV18/UIX Hamiltonian model, are displayed in Fig. 2. The
dashed (solid) curves represent the results of calculations
including the one-body (one-body plus MEC) EM charge
operators (note that ISB corrections in the nucleon form
factors entering the two-body EM charge operators, listed
explicitly in Ref. [8], are neglected). Similar results (not
shown in Fig. 2 to reduce clutter) are obtained with the
other Hamiltonian models. In particular, the model depen-
dence in the calculated F�0��q� form factor is found to be
weak, although the change of sign in the predictions cor-
responding to the N3LO model occurs at a slightly lower
value of momentum transfer than in those corresponding to
the other models, which are in excellent agreement with
the experimental data from Refs. [25]. From the figure it is
evident that for q  1:5 fm�1, the effect of MEC in both
F�0��q� and F�1��q� is negligible.

0.0 0.1 0.2 0.3

Q
2
 [(GeV/c)

2
]

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

G
E1⁄ (Q

2 )

FIG. 1. The isospin-violating nucleon form factor G16
E�Q

2�.
The band comprises a range of values for various vector-meson
coupling constants, as well as an estimate of higher-order chiral
corrections. For details, see Ref. [9].
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In the inset of Fig. 2, we show the model dependence of
the ratio jF�1��q�=F�0��q�j (all calculations include MEC).
The various Hamiltonian models give predictions quite
close to each other, although the value for the N3LO is
somewhat larger than for the other models, reflecting the
larger percentage of T � 1 admixtures in the 4He ground
state, predicted by the N3LO potential. The calculated
ratios F�1��q�=F�0��q� at Q2 � 0:077 �GeV=c�2 are of the
order of�0:002. The inclusion of NNN potentials tends to
reduce the magnitude of F�1�=F�0�, while ignoring MEC
contributions, at this value of Q2, would lead, at the most,
to 1.5% decrease of this magnitude.

Note that the value estimated in Ref. [11] was
jF�1�=F�0�j � 0:0014 at Q2 � 0:077 �GeV=c�2, although
it was computed in first order perturbation theory by only
keeping the ISB corrections due to the Coulomb potential.
However, the latter only account for roughly 50% of the
PT�1 probability in the 4He ground state [23], and, as-
suming the ratio above to scale with

�����������
PT�1

p
, one would

have expected a smaller value for it than actually ob-
tained (�0:0014) in Ref. [11]. Therefore, at Q2 �

0:077 �GeV=c�2, both contributions F�1�=F�0� and G16
E are

found of the same order of magnitude as the central value
of � in Eq. (16). Using in this equation the value
F�1�=F�0� � �0:00157 obtained with the Hamiltonian
models including NNN potentials, and the chiral result
for G16

E � �0:0017
 0:0006, one would obtain Gs
E	Q

2 �
0:077 �GeV=c�2� � �0:001
 0:016 thus suggesting that
the value of � is almost entirely due to isospin admixtures.
Of course, the experimental error on � is still too large to
allow us to draw a more definite conclusion. A recent
estimate of Gs

E using lattice QCD input obtains [26]
Gs
E	0:1 �GeV=c�2� � �0:001
 0:004
 0:003. An in-

crease of 1 order of magnitude in the experimental accu-

racy would be necessary in order to be sensitive to Gs
E at

low values of Q2. Finally, contributions to the asymmetry,
originating from PV components in the nuclear potentials
induced by hadronic weak interactions, are expected to be
much smaller than the ISB corrections studied here [27].
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FIG. 2. The F�0��q� and F�1��q� form factors for the AV18/UIX
Hamiltonian model. The F�0��q� is compared with the experi-
mental 4He charge form factor [25]. The ratio jF�1��q�=F�0��q�j
(all calculations include MEC) is shown in the inset for the four
Hamiltonian models considered in this Letter.
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