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A model-independent analysis of the infinite-momentum-frame charge density of partons in the
transverse plane is presented for the nucleon. We find that the neutron-parton charge density is negative
at the center, so that the square of the transverse charge radius is positive, in contrast with many
expectations. Additionally, the proton’s central d quark charge density is larger than that of the u quark by
about 30%. The proton (neutron) charge density has a long range positively (negatively) charged
component.
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A truly impressive level of experimental technique,
effort, and ingenuity has been brought to measuring the
electromagnetic form factors of the proton and neutron
(nucleon) [1]. These quantities are probability amplitudes
that the nucleon can absorb a given amount of momentum
and remain in the ground state, and as such should be
important sources of information about the nucleon charge
and magnetization densities.

The textbook interpretation of these form factors is that
their Fourier transforms are measurements of the charge
and magnetization densities. But the initial and final nu-
cleons have different momentum, and therefore different
wave functions. This is because the relativistic boost op-
erator that transforms a nucleon at rest into a moving one
changes the wave function in a manner that depends on the
momentum of the nucleon. The presence of different wave
functions of the initial and final nucleons invalidates a
probability or density interpretation.

A proper determination of a charge density requires that
the quantity be related to the square of a wave function or
of a field operator. The technical solution to the problem of
determining the relevant density operator has been known
for a long time [2], and has been elegantly explained
recently [3,4] in terms of generalized parton distributions
GPDs. The charge density ��b� [5] of partons in the
transverse plane is a two-dimensional Fourier transform
of the F1 form factor. Here we present the first phenome-
nological analysis of existing data to determine ��b� for
the neutron and proton. The results for the neutron contra-
dict the long-standing notion, derived from both gluon-
exchange and meson-cloud models [6,7], that the nonvan-
ishing charge density at the center of the neutron is
positive.

We begin by presenting definitions of the form factors.
Let J��x� be the electromagnetic current operator, in units
of the proton charge. Then the nucleon form factors are
given by
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2�

� i
���

2M
q�F2�Q

2�

�
u�p; ��; (1)

where the momentum transfer q� � p0� � p� is taken as
spacelike, so that Q2 � �q2 > 0. The nucleon polariza-
tion states are chosen to be those of definite light-cone
helicities �, �0 [8]. The charge (Dirac) form factor is F1,
normalized such that F1�0� is the nucleon charge, and the
magnetic (Pauli) form factor is F2, normalized such that
F2�0� is the anomalous magnetic moment. The Sachs form
factors [9]
 

GE�Q2� � F1�Q2� �
Q2

4M2 F2�Q2�;

GM�Q
2� � F1�Q

2� � F2�Q
2�;

(2)

were introduced so as to provide an expression for the
electron-nucleon cross section (in the one photon exchange
approximation) that depends on the quantities G2

E and G2
M

but not the product GEGM. In the Breit frame, in
which p � �p0, GE is the nucleon helicity-flip matrix
element of J0. Furthermore, the scattering of neutrons
from the electron cloud of atoms measures the derivative
�dGE�Q

2�=dQ2 at Q2 � 0, widely interpreted as 6 times
the mean-square charge radius of the neutron. However,
any probability or density interpretation ofGE is spoiled by
a nonzero value of Q2, no matter how small [10]. Any
attempt to analytically incorporate relativistic corrections
in a p2=m2

q type of expansion would be doomed by the
presence of the quark mass, mq, to be model dependent.

The newly appreciated and widely studied generalized
parton distributions GPDs [11] are of high current interest
because they can be related to the total angular momentum
carried by quarks in the nucleon and can be determined
using deeply virtual Compton scattering experiments [12].
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These distributions are specific matrix elements of quark-
field operators, between nucleon states, which in contrast
to the usual quark distribution functions, do not have the
same momenta. We consider the specific case in which the
longitudinal momentum transfer � is zero, and �0 � �.
Then, in the light-cone gauge, A� � 0, the matrix element
defining the GPD, Hq for a quark of flavor q [13] is
 

Hq�x; t� �
Z dx�

4�
hp�;p0; �j �q

�
�
x�

2
; 0
�
��q

�
x�

2
; 0
�

� jp�;p; �ieixp
�x� : (3)

We use the abbreviation Hq�x; � � 0; t� � Hq�x; t� and
�t � ��p0 � p�2 � �p0 � p�2 � �q2 � Q2. The simple
form of t results from its invariance under transverse boosts
[8]: Lorentz transformations, defined by a transverse vector
v that transform a four-vector k according to k� ! k�,
k! k� k�v, and k� such that k2 is unchanged. These
quantities are part of a kinematic subgroup of the Poincaré
group that obey the same commutation relations as those
among the generators of the Galilean transformations for
nonrelativistic quantum mechanics in the transverse plane.
The presence of the operator �� insures that independent
field operators appear in the matrix element.

GPDs allow for a unified description of a number of
hadronic properties [12]. The most relevant for us are that
if t � 0 they reduce to conventional PDFsHq�x; 0� � q�x�,
and that the integration of Hq over x yields the nucleon
electromagnetic form factor

 F1�t� �
X
q

eq
Z
dxHq�x; t�: (4)

The spatial structure of a nucleon can be examined if one
uses [2–4] nucleonic states that are transversely localized.
The state with transverse center of mass R set to 0 is
formed by taking a linear superposition of states of trans-
verse momentum. In particular,

 jp�;R � 0; �i �N
Z d2p
�2��2

jp�;p; �i: (5)

where jp�;p; �i are light-cone helicity eigenstates [8] and
N is a normalization factor satisfying jN j2

R d2p?
�2��2 � 1.

References [14,15] use wave packet treatments that avoid
states normalized to 	 functions, but this leads to the same
results as using Eq. (5). Note, however, the relevant range
of integration in Eq. (5) must be restricted to jpj � p� to
maintain the interpretation of a nucleon moving with well-
defined longitudinal momentum [14]. Thus we use a frame
with very large p�. It is in just such a frame that the
interpretation of a nucleon as a set of a large number of
partons is valid.

Using Eq. (5) sets the transverse center of momentum of
a state of total very large momentum p� to zero, so that
transverse distance b relative to R can be defined. Thus we
may generalize the quark-field operator appearing in

Eq. (3) by making a translation:

 Ô q�x;b� �
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�
�
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2
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2
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�
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The impact parameter dependent PDF is defined [14] as the
matrix element of this operator in the state of Eq. (5):

 q�x;b� � hp�;R � 0; �jÔq�x;b�jp�;R � 0; �i: (7)

The use of Eq. (5) in Eq. (7) allows one to show that
q�x;b� is the two-dimensional Fourier transform of the
GPD Hq:

 q�x;b� �
Z d2q

�2��2
eiq	bHq�x; t � �q2�; (8)

with Hq appearing because the initial and final helicities
are each �. A complete determination of Hq�x; t� (with t 

0) would determine q�x;b�.

One finds a probability interpretation [2] by integrating
q�x;b� over all values of x. This sets the value of x� to 0, so
that

 Z
dxq�x;b� � hp�;R � 0; �jqy��0;b�q��0;b�

� jp�;R � 0; �i: (9)

If one multiplies the above relation by the quark charge eq
(in units of e), sums over quark flavors, uses Eq. (5) with
Ôq�x;b� � e�ip̂	bÔq�x; 0�eip̂	b along with Eq. (4), the re-
sulting infinite-momentum-frame (IMF) parton charge
density in transverse space is

 ��b� �
X
q

eq
Z
dxq�x;b� �

Z d2q

�2��2
F1�Q2 � q2�eiq	b:

(10)

This transverse charge density ��b�, based on F1 [2],
seems to contrast with the lore relating the charge density
to GE. There is no conflict; a feature understood by con-
sidering the relation between the Breit frame and the IMF.
In the Breit frame, the helicity-flip matrix element of J0 is
GE. One uses a Lorentz transformation to consider the
form factor in the IMF. Then the operator helicity-flip
matrix element of J0 becomes the helicity nonflip matrix
element of J�, or F1. The transformation to the IMF gains
model independence while replacing GE by F1.

We exploit Eq. (10) by using measured form factors to
determine ��b�. Recent parameterizations [16–18] of GE
and GM are very useful so we use Eq. (2) to obtain F1 in
terms of GE, GM. Then ��b� can be expressed as a simple
integral of known functions:
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1� 

; (11)

with 
 � Q2

4M2 and J0 a cylindrical Bessel function.
A straightforward application of Eq. (11) to the proton

using the parameterizations [16,17] yields the results
shown in the upper panel of Fig. 1. The curves obtained
using the two different parameterizations overlap. Further-
more, there is negligible sensitivity to form factors at very
high values of Q2 that are currently unmeasured. The
density is peaked at low values of b, but has a long positive
tail, suggestive of a long-ranged, positively charged pion
cloud.

The neutron results are shown in the lower panel of
Fig. 1. The curves obtained using the two different param-
eterizations seem to overlap, but see below. The surprising
result is that the central neutron charge density is negative.
If the neutron is sometimes a proton surrounded by a
negatively charged pionic cloud, one would expect to
obtain a positive central density [7]. Another mechanism
involving correlations in the nucleonic wave function in-
duced by one gluon exchange would also lead to a positive
central density because the interaction between two iden-
tical d quarks [6] is repulsive. The values of the integral of
Eq. (11) are somewhat sensitive to the regime 2< 
< 4
for whichGE is as yet unmeasured. About 30% of the value
of ��0� arises from this region.

The negative central density deserves further explana-
tion. The upper panel of Fig. 2 shows F1 for the neutron
obtained using the two different parameterizations which
are observably different. However, in both cases F1 is

negative [because of the dominance of the GM term of
Eq. (11)] for all values of Q2. This, along with taking b �
0, J0�Qb� � 1 in Eq. (11), leads immediately to the central
negative result. The long range structure of the charge
density is captured by displaying the quantity b��b� in
the lower panel of Fig. 2. At very large distances from
the center, again suggesting the existence of the long-
ranged pion cloud.

The present analysis provides detailed information
about the location of charge density within the nucleon,
and also incorporates the lore regarding mean-square-radii
(MSR). It has long been known that the MSR defined by
the form factor GE is dominated by the Foldy term
�1:91=�4M2� � �0:126 fm2 [19,20] arising from the
neutron magnetic moment F2�0�. The experimental value
of the GE MSR, cited in [17], is ��0:114� 0:003� fm2, so
the MSR associated with F1 (obtained from the integralR
d2bb2��b�) is small and positive (� 0:012 fm2). This

result is consistent with Figs. 1 and 2. However, knowing
the MRS of F1 does not, by itself, allow one to conclude
that the central neutron charge density is negative, does not
reveal the critical model-independent feature that at the
very largest distances the charge density is negative and
does not imply the oscillatory behavior displayed in Figs. 1
and 2.

One can gain information about the individual u and d
quark densities by invoking charge symmetry [invariance
under a rotation by � about the z (charge) axis in isospin
space] [21] so that the u, d densities in the proton are the
same as the d, u densities in the neutron. We also neglect
the effects of s�s [22] or heavier pairs of quarks. In this case
�u�b� � �p�b� � �n�b�=2, �d�b� � �p�b� � 2�n�b�. The
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FIG. 1 (color online). Upper panel: proton charge density
��b�. Lower panel: neutron charge density. The solid curves
use the parameterization of [17], and the dashed (red) curve uses
[16].
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FIG. 2 (color online). Upper panel: F1. Lower panel: b��b� in
transverse position space. The solid curves are obtained using
[17] and the dashed curves with [16].
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results, shown in Fig. 3, and obtained with either form
factor parameterization are that the central down quark
density is larger than that for the up quark by about 30%.

Model-independent information about parton distribu-
tions has been obtained. In particular, the central density of
the neutron is negative. Future experimental measurements
of neutron electromagnetic form factors could render the
present results more precise, or potentially modify them
considerably. Obtaining a quantitative and intuitive under-
standing of our results presents a challenge to lattice QCD
and to builders of phenomenological models.
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FIG. 3 (color online). Transverse densities for up u (solid line)
and down d (dashed line) quarks. Each is normalized to unity.
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