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Crossover from Superdiffusive to Diffusive Mixing in Plastically Deformed Solids
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We derive expressions for the effective diffusion coefficient of Richardson’s pairs in plastically strained
solids as a function of the pair separation distance R. We predict that a crossover from superdiffusive to
diffusive mixing takes place when R becomes comparable to the coherence length of the shearing events
underlying the plastic deformation. Molecular dynamics simulations on nanocrystalline and amorphous
systems support this analysis, which thus provides new insight on deformation mechanisms in these
systems. Superdiffusive mixing is experimentally observable by monitoring the rate of dissolution of

precipitates as a function of their initial size.
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Passive markers such as dye particles have been widely
used to image and analyze fluid flows [1-3] since the
temporal evolution of the separation distance between
pairs of markers, Richardson pairs, provides a powerful
tool to distinguish diffusive, convective, and turbulent
mixing in fluid flows [4]. Extensions of this analysis to
solid-state flows have been mostly restricted to large-scale
phenomena, such as the drift of sea ice [5,6] or the mixing
of the Earth’s crust by plate tectonics. In a previous work
[7], we employed Richardson pairs to reveal the scale
dependence of mixing by plastic deformation in crystal-
line solids at the nanoscale. Using molecular dynamics
(MD) to study the atomic mixing forced by plastic defor-
mation in binary mixtures, we measured the mean square
relative displacement (MSRD) of atom pairs (R, At) as a
function of the pair separation distance R, where Ar de-
notes the time elapsed between two configurations. An
effective diffusion coefficient, defined as D.x(R) =
1/1200%(R, At)/dAt, was found to be proportional to R
for separation distances =L, where L is the size of the
computational cell. This unusual dependence, which leads
to superdiffusive mixing, is a simple consequence of the
rate of dislocations cutting through a Richardson pair being
proportional to the pair separation distance, assuming ho-
mogeneous deformation.

In this Letter, we derive an expression for the effective
diffusion coefficient in the more general case of a poly-
crystalline solid subjected to plastic deformation, and we
use the result to calculate the spreading of a point source
with time. A crossover from superdiffusive to diffusive
mixing occurs when the pair separation distance exceeds
the characteristic coherence length of the defects respon-
sible for plastic deformation. We show that this crossover
can thus be employed to determine these lengths, which are
difficult to determine by other methods, in particular, for
nanocrystalline and amorphous materials. Finally, we pro-
pose an experimental procedure for measuring the super-
diffusive mixing during plastic deformation.
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We consider a solid of size L, deformed under constant
plastic strain rate &, at a temperature low enough for
thermal effects to be negligible. We assume that deforma-
tion results in the shearing by a vector b of disklike zones
of characteristic size Agy,. These zones, which we take to be
circular without loss of generality, are limited by Burgers
dislocations in crystals. We assume furthermore that the
shearing events are not correlated in time or space, as we
observe in our MD simulations. The calculation of the
effective diffusion coefficient requires the knowledge of
the fraction of pairs of atoms separated by R that are
affected by a single shearing event, and the average shift
induced in the relative position of two atoms. The latter
quantity can be calculated using the Burgers equation [7],
which gives the displacement field u(r) induced by the
presence of a dislocation loop in an elastically isotropic
solid. In this equation, we need not consider the displace-
ment generated by the dislocation bordering the loop since
this elastic contribution will disappear as other loops and
dislocations form and propagate in the material. In the
present context, the irreversible part of u(r) is due to the
shearing in the loop plane, and is given by b - Q /44,
where () is the solid angle subtended by the loop at a point
r. {) can be expressed in terms of elliptic integrals, but we
propose here examining the two limiting cases R > Ay,
and R < Ag. When R < Ay, it is sufficient to consider
the pairs of atoms that are intersected by the plane of the
loop, since () becomes quickly negligible otherwise; the
relative displacement for these pairs is = b. Straight-
forward geometry considerations show that the fraction
of such pairs is =CRA% L3, where C is a constant of
order unity. The effective diffusion coefficient is thus given
by

C L AZR c
Deff(R) = ﬁbz ZhS Fsh = ﬁbRS, (1)

where Iy, is the rate of formation of loops, and we used the
relationship & = (b/L)(wA2,/4L*)I'g,. As observed in our
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previous MD simulations, D.¢(R) is proportional to both R
and the strain rate, but independent of L. By fitting these
MD results [8] with Eq. (1), we find C = 1.20, and we use
this value in what follows.

The dependence of D with the pair separation distance
leads to a superdiffusive mixing. Indeed, consider the
probability distribution ¢g(R,f) for any two passive
markers, initially in an infinitesimally small point source,
to be separated by a distance R at time ¢, in a three-
dimensional solid where the shearing frequency of pairs
is a linear function of their separation distance, but inde-
pendent of the orientation of the pairs. Taking advantage of
this symmetry and Eq. (1), the kinetic equation governing
the evolution of g(R, t) becomes

1 9 0
agR,r) _ 1 9 R23Deff(R)a—Rq(R, 1)

ot R% R
by 9 ]
=" _R—4(R1), 2
2 IR aRq( ) 2

where I'y = Cé& /. The solution to Eq. (2) can be obtained
directly by inspection [3]

g(R, 1) = 3)

_ 1 - R
87(bTy1)? p( bF0t>'

The distribution of separation distances is thus exponen-
tial, while a diffusive process would lead to a Gaussian
distribution. We have tested the distribution given by
Eq. (3) by kinetic Monte Carlo simulations (not shown
here) of a face centered cubic crystal sheared by Burgers
dislocations, as well as by MD simulations of a single
crystal subjected to repeated biaxial compression, alterna-
tively along the x, y, and z axes. For these MD simulations,
we used a semiempirical potential fitted on Cu and a
(7.6nm)? single crystal which is deformed at 100 K by
24% in each direction per cycle and at a constant strain rate
of 5% 10° s™!, using periodic boundary conditions (see
Ref. [8] for details on the simulation procedure). In such
simulations, dislocations glide through the whole crystal so
that Ay, = L. For pairs that were initially first nearest
neighbors, Fig. 1 shows the plot of g(R, f), accumulated
over 1 ns, thatis 7 (x, y, z) deformation cycles. As predicted
by Eq. (3), In(g#?) scales linearly with R/t, except for very
small R/t values, which are dominated by elastic displace-
ments. Large R values should also be excluded since they
do not satisfy R < Ag,. For fitting purposes we thus used
R =25A and R/t =0.01, and the few scattered data
points with large R/t values were ignored. From the slope
of the fit, one extracts a value for bI'y; of 3.16 X
1073 A/ps. If we use C = 1.2, as previously determined,
and b = 2.55 A, since deformation is dominated by the
glide of correlated pairs of Shockley partial dislocations, it
yields a plastic strain rate of 4.2 X 10° s™!, in very good
agreement with the imposed strain rate. It follows from
Eq. (3) that the average square separation distance evolves
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FIG. 1 (color online). The distribution of changes in pair
separation distance at time z, (R, t), measured in MD simula-
tions during cyclic deformation of single crystal Cu at 100 K is
plotted versus R/t. The solid line is a fit satisfying Eq. (3) with
by =3.16 X 1073 A/ps.

as (R*) = 12(bTy1)?, clearly revealing the superdiffusive
character of the mixing.

We now turn to the other limiting case, when the pair
separation distance is much larger than the characteristic
size of the defects responsible for plasticity, i.e., R >> Ag,.
In this case it is sufficient to consider the Richardson pairs
that have one atom within a distance less than = Ay, from
the shear loop. Indeed, as the distance d from a marker to
the loop becomes larger, the solid angle behaves as () o
d 2. Thus, if both atoms of a pair are distant from the loop
by a distance exceeding Ay, the square relative displace-
ment of the two atoms of such pairs decays as d~*, whereas
their number density increases only as R?, so that their
overall contribution to the effective diffusion coefficient is
negligible. The fraction of pairs that have one end in a
sphere of diameter Ay bounded by the shear loop is
/323, L3, and, for simplicity, we assume a constant
relative displacement of b/2. Using again the relationship
between ¢ and Iy, the effective diffusion coefficient is
calculated to be D% =~ J-bAy¢, a value that is indepen-
dent of R. Combining this last expression with Eq. (1), the
crossover from superdiffusive to diffusive mixing takes
place for R of the order of Ay, and thus Ay, plays a role
analogous to the so-called integral length scale in turbulent
flows [1].

We now present a second set of MD simulations to test
the above predictions, in particular, the existence of a
crossover for D.y. To that effect, we used a (18.1 nm)?
nanocrystalline Cu system, with an initial grain size of
5 nm, which was deformed by 12% by uniaxial compres-
sion at a rate of 6 X 108 s™! at 100 K. For a given initial
pair separation R, the effective diffusion coefficient was
obtained by measuring the MSRD of the corresponding
atom pairs during the total simulation time. As for diffu-
sion coefficient measurements, the MSRD should exceed a
few b? to go beyond the ballistic regime. In addition, since
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D, by definition, depends on R, it is also required that the
MSRD be small compared to R. Finally, large R values
should be ignored since the corresponding pairs are af-
fected by boundary conditions. For the present simulations,
the above conditions are satisfied by imposing 10 = R =
100 A and using the total simulation time, =178 ps, for the
calculations of the MSRD. Figure 2 shows that the effec-
tive diffusion coefficient scales linearly with R at small
distances, as expected from Eq. (1), but crosses over to a
constant value for larger R values. Since only one com-
pression was carried out, atom locations were rescaled to
restore the initial shape of the cell before calculating D,
thus correcting for the relative drift between atoms arising
from the anisotropy of the deformation. To measure the
crossover length, we fit D.s(R) by an exponential relaxa-
tion, and from the decay length we obtain a crossover
length of =2.37 nm, i.e., half the grain size. For such small
nanograin size, it has often been reported that deformation
is dominated by grain boundary sliding and grain rotation
[9]. We note that the formalism and assumptions used to
derive Eq. (1) and related expressions can be extended to
grain boundary sliding by considering a continuous distri-
bution of elemental shear distances instead of discrete
values imposed by the crystalline lattice. In evaluating
the relative contributions of accommodation mechanisms,
a detailed analysis of the deformation in the present case
[10] shows that, while grain boundary sliding dominates,
dislocation activity provides a significant contribution to
the plastic strain, over 30% in steady state. The existence of
a crossover at half the grain size, see Fig. 2, indicates that
the coherence lengths of dislocation glide and grain bound-
ary sliding do not exceed the grain size. For larger grain
sizes, =30 nm and above, we expect that plastic deforma-
tion will be dominated by the glide and transmission of
dislocations through grain boundaries, and D¢ would not
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FIG. 2 (color online). Effective diffusion coefficient for the
relative displacement of pairs of atoms as a function of the pair
separation distance R in nanocrystalline Cu subjected to 12%
compression in MD simulations. The dashed line is a fit with an
exponential relaxation.

saturate in that case. We also note that from the slope at
R — 0in Fig. 2 and Eq. (1) we obtain b = 1.33 A, which
represents an average shear displacement of individual
events resulting from dislocation glide and grain boundary
sliding.

The present approach also provides new insight on the
defects responsible for plastic deformation in amorphous
solids. The nature and the characteristics of these so-called
flow defects are still debated [11]. We performed MD
simulations for a binary alloy CusyTis, using semiempir-
ical potentials [12]. A homogeneous liquid mixture equili-
brated at 2000 K was quenched to 100 K at a rate of
100 K/ps to stabilize an amorphous solid. This solid was
then deformed repeatedly at 100 K, at a strain rate of 5 X
10° s~!, under uniaxial compression. Here again, D,
presents a nearly linear dependence on R at small separa-
tion distances, crossing over to a constant value for R =
6.5A (as measured from the decay length of an exponential
fit to the data). The slope of D.; with R yields a direct
measure of the amount of the shear in one flow defect; here,
by =~ 1.0 = 0.3 A (the large range is due to significant
variations from run to run). This value is in good agreement
with an analysis of the histogram of changes in pair sepa-
ration distanceos over time, where a broad peak is observed
from 1 to 1.5 A. This distance compares favorably with the
atomic displacements measured by Schuh and Lund in
small amorphous clusters sheared in MD simulations
[13]. The crossover length provides a direct measure of
the extension of the coherence of the atomic shifts intro-
duced by one flow defect. This number is in good agree-
ment with the size of =1.5 nm measured by Zink et al.,
from the correlation function of the displacement histo-
gram [14]. We have checked that the crossover length is
unchanged when the linear size of the system is doubled,
from 6 to 12 nm, and when the strain rate is reduced by
1 order of magnitude.

It is generally not straightforward to use a Richardson
pair analysis on experiments of plastic deformation of
three-dimensional solids with nanoscale microstructures.
We provide here, however, a procedure that overcomes this
obstacle. Consider an initial microstructure of a binary
system A;_, B, that comprises pure-B precipitates, of ra-
dius R,, in a pure-A matrix. As a consequence of the
superdiffusive mixing, the precipitate dissolution rate by
plastic deformation, in the absence of any other atomic
transport mechanism, displays an unusual dependence on
the radius of the precipitates. Indeed, the initial rate of
mixing is proportional to the rate of creation of interfacial
area at the matrix-precipitate interfaces. The latter rate, per
volume L3, is the product of the number density of precip-
itates n,, sheared by a dislocation gliding over a distance L
(for simplicity we consider here the case where slip trans-
fer across precipitate-matrix boundaries is relatively easy,
so that we can use Ay = L) times the interfacial area
newly created g27R b times the frequency of dislocation
glide I'y,,
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3
M = npzﬁgz’iTprrsh :%8, (4)
dt L R,
where g is a geometrical factor taking into account the
fact that dislocations cut the precipitates at different dis-
tances from their center. We note that an expression simi-
lar to the first equality in Eq. (4) had been derived in the
past for precipitate dissolution in persistent slip bands.
Equation (4) has been further simplified by introducing
the volume fraction of the precipitates, V, = n p47TR?, /3,
and by taking advantage of the relationship between 'y,
and the strain rate, as in Eq. (1). Finally, for the sake of
comparison with experiments, we reexpress this rate in
terms of the short-range order parameter of this alloy ().
As defined by Lund and Schubh, this parameter varies from
—1 for a fully decomposed state to O for a random alloy, to
positive values for chemically ordered structures. One
obtains finally

dQ _3g Vp b .
ey ) 5)
dt 4 Cp(1 —Cp) R,

where Cjp is the molar fraction of B species. The key result
is that, for a given initial volume fraction of the precipitates
Vp, the mixing rate is proportional to 1/R,,. This depen-
dence is unusual in the sense that, if these precipitates were
to dissolve in the matrix by a diffusive process, the mixing
rate would scale as 1/R3,.

MD simulations were performed to provide further sup-
port of the unusual dissolution rate in plastically deformed
solids. Figure 3 illustrates the results obtained for an A-B
alloy with xz =25%, a positive heat of mixing of
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FIG. 3 (color online). Evolution of the mixing parameter ()
(see text for definition) during the dissolution of nanoprecipitates
forced by biaxial compression of a crystalline A;5B,s alloy in
MD simulations, containing initially 1 (X), 10 (O), 30 (),
50 (A), and 70 (OJ) pure B precipitates. The inset shows the
collapse of data onto one master curve when time is rescaled as
t(R,/R,)* with @ = 1.05, where R, is the precipitate radius for
the initial configuration with n precipitates.

15.6 kJ/mol, and no lattice mismatch. The simulation
cell contained 32000 atoms and was deformed at a rate
of 5 X 10° s ! following the method used in our previous
work [8], with the exception that biaxial compression is
used here to suppress twinning. The simulations are run at
100 K to suppress any thermally activated atomic transport.
Various initial microstructures were prepared, with the
same volume fraction of precipitates, V, = 25%, but
with 1, 10, 30, 50, and 70 precipitates. As illustrated by
the inset of Fig. 3, the data collapse onto a single curve
when a rescaled time unit #(R,) " is employed. The best fit
is obtained for & = 1.05, which is in very good agreement
with the value 1.0 predicted by Eq. (5). The comparison of
the initial mixing rates measured from the MD results to
those expected from Eq. (5) yields g = 1/4, a value con-
sistent with the picture employed to derive Eq. (5). We note
that the mixing rate given by Eq. (5) is a minimum value
since we have only considered the dislocations geometri-
cally necessary to achieve a given plastic strain. Besides
fundamental interest, the scale dependence of mixing
forced by plastic deformation should be relevant to mate-
rials processing, in particular, mechanical alloying, rolling,
and friction stir welding, and to the evolution of tribolayers
during frictional wear.
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