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We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law
singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate
the corresponding exponent as a function of the wave vector and the interaction strength.
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Progress in the ability to manipulate ultracold atomic
gases stimulates the interest in fundamental properties of
one-dimensional (1D) Bose liquids [1]. The quantity char-
acterizing the collective excitations in these systems, the
dynamic structure factor (DSF), is now directly accessible
experimentally using the Bragg spectroscopy technique
[2]. The very first such measurements [3] clearly showed
that the resonance in DSF is wider in 1D than it is in higher
dimensions. The goal of this Letter is to elucidate the
nature of the resonance in a 1D system of interacting
bosons.

In the absence of interactions, bosons occupy the lowest-
energy single-particle state at zero temperature. An exter-
nal field that couples to the particle density would excite
bosons from the ground state. The corresponding absorp-
tion spectrum reflects the free boson’s dispersion relation
��q�. Accordingly, DSF at zero temperature is given by
S�q;!� / ��!� ��q��.

In dimensions higher than one, this behavior remains
largely intact even in the presence of interactions. Bosons
still form a condensate, and excitations of the system are
very well described in terms of Bogoliubov quasiparticles
[4]. Interactions merely affect their spectrum: ��q� / q at
small q. The quasiparticle decay rate scales with q as
1=�q / q

5 [4]; hence, the quasiparticle peak in S�q;!� at
! � ��q� is well defined, 1=�q � ��q�.

In 1D, the effect of interactions is dramatic: quantum
fluctuations destroy the condensate. Long-wavelength
(q! 0) excitations of a 1D Bose liquid are often described
in hydrodynamic approximation [5] (see [6] for a recent
review). However, the shape of the peak in DSF cannot be
addressed using this approach: in hydrodynamics the peak
has zero width.

In this Letter we study DSF of a 1D Bose liquid beyond
the hydrodynamic approximation. We consider the Lieb-
Liniger (LL) model [7]: N identical spinless bosons with
contact repulsive interaction placed on a ring with circum-
ference L,
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��xi � xj�: (1)

The model is integrable [7,8]. The integrability allows one
to relate the parameters of the hydrodynamic description
[5,6], the sound velocity v and the parameter K, to the
concentration n � N=L and the dimensionless interaction
strength � � mc=n [9]. Finding dynamic correlation func-
tions, such as DSF, in a closed form remains a challenge
[8]. The most impressive progress so far was achieved by
combining a finite-N numerics with the algebraic Bethe
ansatz [10]. Here we study the singular behavior of DSF
analytically.

DSF is defined by

 S�q;!� �
Z
dxdtei�!t�qx�h��x; t���0; 0�i; (2)

where ��x� �
P
i��x� xi� is the density operator. We

show that DSF exhibits power-law singularities at the
Lieb modes �1;2�q� [7,11]; see Fig. 1(a). In particular,
DSF diverges at !! �1�q� as

 S�q;!� �
m
q

�������� ��
!� �1

��������
�1

����1 �!� � �1��!� �1�	;

(3)

see Fig. 1(b). Here ���q� � minf�1 � �2; vqg. Note that
the divergence occurs within the continuum.

The exponent�1 and the coefficient �1 in Eq. (3) depend
on the dimensionless momentum Q � q=mc and the inter-
action strength �. We were able to compute �1 and �1 in
two limiting cases:

FIG. 1. (a) Shaded area indicates the region in (!; q) plane
where S�q;!� � 0 at zero temperature. DSF exhibits power-law
singularities along the solid lines. (b) Sketch of the dependence
of the structure factor on ! at a fixed q < 2	n.
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 �1 � 1� �2K��1; �1 � 1 (4)

for Q
 ��K��1 �maxf1; ��1=2g and arbitrary �, and

 �1 � ��=	��1� �=2	�; �1 �
sin��2=4	�

sin��� �2=4	�
(5)

for �
 1 and arbitrary Q (here � � 2 arctanQ).
According to Eq. (5), �1 � 2Q=	 at Q! 0; we expect
that �1 / Q at small Q for any �.

The line ! � �1�q� has a ‘‘replica,’’ ! � �2�q�, at q >
2	n. Here DSF does not diverge, but still has a power-law
nonanalyticity. The singular part of DSF has the form
�S�q;!� / j!� �2j

�2 with the exponent

 �2 � 2K � �2K��1 � 1 (6)

at arbitrary � and Q
 maxf1; ��1g, and

 �2 � ��=	��1� �=2	� (7)

at �
 1 and arbitrary Q.
Lieb’s holelike (according to Bethe-ansatz classifica-

tion) mode �2�q� serves as the lower boundary of the
support [11] of S�q;!� at q < 2	n; see Fig. 1. Here DSF
is given by

 S�q;!� �
m
q

�
!� �2

��

�
�2

��!� �2�: (8)

For �
 1 the exponent �2 here is given by Eq. (7).
Equations (3)–(8) represent the main result of this

Letter. The shape of S�q;!� near ! � �1�q�, see Eq. (3),
differs qualitatively from the Lorentzian quasiparticle peak
in higher dimensions. In 1D, the collective mode is char-
acterized by a power-law divergence of S�q;!�. This di-
vergence is protected by the integrability and associated
with it absence of three-particle collisions [8]. It is smeared
only at a finite temperature T,

 maxfS�q;!�gfixed q / T��1�q�; T � ��: (9)

An apparent saturation of the height of the peak with the
decrease of T would provide a direct measure of three-
particle scattering (absent in LL model) or recombination
[12] rates.

In the remainder of the Letter we outline the derivation
of the above results. We start with the limit of large q.
Consider the state �yq j0i, where �yq �

P
k 
y
k�q k is the

Fourier component of the density operator ( yp creates a
boson with momentum p), and j0i is the ground state of the
Bose liquid. Without interactions, all bosons in j0i occupy
the single-particle state with k � 0. The operator �yq anni-
hilates one such boson while creating another in the empty
state with momentum q. With interactions present, the
occupation number falls off [13] rapidly with k at k *

mv. Therefore, for q
 mv the state �yq j0i still contains
a single particle at momentum close to q, as well as a
‘‘hole’’ in the quasicondensate with much smaller momen-

tum. This observation suggests to approximate

 �yq �
Z
dxdy�x� �x�; (10)

where dy�x� � L�1=2P
jkj<k0

e�ikx yq�k creates a high-
momentum particle and  �x� creates a long-wavelength
hole; here, k0 �mv is the high-momentum cutoff. The d
particle is described by the Hamiltonian

 Hd �
Z
dxdy�x���1�q� � ivd@x	d�x�; vd � q=m:

(11)

Here we took into account that �1�p� � p2=2m at large p
[11] and linearized the dispersion relation around p � q.
We treat the long-wavelength bosons in the conventional
hydrodynamic approximation [5,6],

  �x� � �n� 	�1@x’	
1=2ei#�x�: (12)

The fields’;# obey �’�x�; #�y�	 � i�	=2� sgn�x� y� and
their dynamics is governed by the Hamiltonian

 H0 �
v0

2	

Z
dx
�
�@x’�2

K2 � �@x#�
2

�
; v0 �

	n
m
: (13)

Equations (2), (10), and (12) yield DSF in the form

 S�q;!� �
Z
dxdtei!thB�x; t�By�0; 0�i (14)

with By�x� / dy�x�ei#�x�. Evaluation of Eq. (14) with the
quadratic Hamiltonian Hd �H0 is straightforward and
yields Eq. (3) with �1 and �1 given by Eq. (4). The
decomposition Eq. (10) is applicable for q
 k0 �mv,
hence the restriction onQ in Eq. (4). On the other hand, the
constraint jkj< k0 on the momentum of d particle limits
the applicability of Eq. (3) to j!� �1�q�j & qv.

We now extend the above derivation to the vicinity of the
mode �2�q� at q
 maxf2	n; n�g. At these momenta,
�2�q� � �1�q� 2	n� is a replica of mode �1�q�. At a given
energy ! � �2�q� the relevant excitation includes, in ad-
dition to d particle, the 2	n-momentum excitation of the
quasicondensate Eq. (13). In hydrodynamics [5,6], such
excitation corresponds to  �x� / ei#�x��2i�	nx�’�x�	 instead
of Eq. (12). DSF is still given by Eq. (14) with By�x� /
dy�x�ei#�x��2i�	nx�’�x�	 and with the replacement �1 ! �2

in Eq. (11). Evaluation of Eq. (14) then yields a power law
for the singular part of S�q;!� with the exponent �2 given
by Eq. (6).

At �
 1, one can take an advantage of the exact
mapping [14] of the LL model onto fermions with �00�x�
interaction. The mapping generalizes the famous duality
[15] between impenetrable bosons and free fermions and is
based on the elementary identity

 2 arctan�p=mc� � 	� 2 arctan�mc=p�: (15)

The second term in the right-hand side here is the scatter-
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ing phase shift �s�p� of the symmetric wave function [16]
of two particles with relative momentum p interacting via
VB � c��x� potential. Adding 	 to �s converts the sym-
metric wave function into the antisymmetric one. On the
other hand, the left-hand side of (15) is the phase shift
�a�p� of the antisymmetric wave function of two particles
interacting via potential VF � �2=�m2c��00�x�. In view of
the integrability of the LL model, the two-particle phase
shifts contain a complete information about the Bethe-
ansatz wave function of the many-body problem. Thus,
for any bosonic eigenstate of the LL model (1) there is a
dual fermionic eigenstate of the Hamiltonian

 HF � �
1

2m

XN
j�1

@2

@x2
j

�
2

m2c

X
i>j

�00�xi � xj� (16)

that has the same energy. The two wave functions coincide
in one of the sectors, say x1 < x2 . . .< xN , but differ by
their symmetry with respect to the permutation of parti-
cles’ coordinates. Since the density operator does not
permute particles, its matrix elements between any two
many-body eigenstates of Eq. (1) are identical to those
evaluated with the corresponding dual eigenstates of HF.
In particular, the DSF for the LL model coincides with that
for the fermionic model Eq. (16).

It is convenient to rewrite Eq. (16) in the second-
quantized representation,

 HF �
X
p


p 
y
p p �

X
k

Vk
2L
�k��k; Vk �

2k2

m2c
: (17)

Here the operator  yp creates a fermion with momentum p
and energy 
p � p2=2m and �k �

P
p 
y
p�k p.

Strong repulsion between the original bosons corre-
sponds to a weak interaction in the dual fermionic model
Eqs. (16) and (17). In the limit c! 1 Eqs. (16) and (17)
describe free fermions. In this limit the structure factor
differs from zero only in a finite interval, �2 <!< �1 with
�1;2�q� � v0q� q2=2m. A weak (/1=�) residual interac-
tion between fermions leads to corrections to �1;2; for
example, the Fermi velocity v0 is replaced by the sound
velocity v � v0=K � v0�1� 4=�� [9,11]. Rather than
discussing these modifications, we concentrate here on
the singularities in S�q;!�.

DSF is proportional to the dissipative response to a field
that couples to density. In the fermionic representation, the
absorption of a quantum with energy ! and momentum q
is due to excitation of particle-hole pairs; there is just one
such pair in the limit c! 1. At !! �1, the hole is
created just below the Fermi level while the particle has
momentum close to kF � q; here kF � 	n=m is the Fermi
momentum. In the presence of interactions, such process is
accompanied by a creation of multiple low-energy particle-
hole pairs near the two Fermi points p � �kF. Similar to
the well-known phenomenon of the Fermi-edge singularity
in the x-ray absorption spectra of metals [17], the prolif-

eration of low-energy pairs leads to power-law singular-
ities in the response function at the edges of the spectral
support.

The Fermi-edge singularity relies crucially on the sharp-
ness of the distribution function which is smeared at a finite
temperature, hence Eq. (9). Note that in an integrable
model Eq. (16) there is no relaxation of excited fermions
[18] as three-particle collisions are absent. Therefore, at
T � 0 there is no smearing of the power-law singularities
in S�q;!� even at finite ! [18,19].

The derivation of Eqs. (3), (5), (7), and (8) follows the
method of Ref. [20]. Consider first the limit !! �1. We
truncate the continuum of single-particle states to three
narrow subbands [20] of the width k0 � q: d subband
around p � q that hosts a single particle in the final state
of the transition, and two subbands, � � �, around the
right (left) Fermi points p � �kF that accommodate low-
energy particle-hole pairs. After linearization of the spec-
trum within each subband, the resulting effective
Hamiltonian takes the form

 H � Hd �H0 �Hint (18)

with Hd given by Eq. (11) and

 H0 �
Z
dx
X
�

 y��x���i�v@x	 ��x� (19)

with  ��x� � L�1=2P
ke
i�k��kF�x k. The last term in the

right-hand side of Eq. (18) describes interaction,

 Hint �
X
�

U�

Z
dx���x��d�x�; (20)

where �� �  y� � and the coupling constants U� are
related to the parameters of the initial Hamiltonian (17);
see Eq. (21) below.

Note that Hint does not include the direct interaction
between the right and left movers. Indeed, the correspond-
ing coupling constant V2kF � 8	v0=� is small in the limit
�
 1. In the absence of such interaction, the remaining
coupling constants U� are set by the requirement [19] that
the two-particle scattering phase shifts for the effective
Hamiltonian (18)–(20) with linearized spectrum reproduce
those for the original model (16) and (17). In the latter case,
the phase shifts �� 
 �a�q� kF � kF� (see [16]) are
given by

 �� � 2 arctan
Vq�kF�kF
2�vd � v�

:

In the limit �
 1 taken at a constant Q � q=mc, one
finds �� � �. In order to reproduce these phase shifts, the
coupling constants in Eq. (20) must be equal to

 U� � ��vd � v��; � � 2 arctanQ: (21)

In terms of the effective Hamiltonian (18)–(21), the struc-
ture factor is given by Eq. (14) with By�x� � dy�x� ��x�.
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Following the steps familiar from the theory of the Fermi-
edge singularity [21], we arrive at Eq. (3) with the expo-
nent given by Eq. (5).

The power law Eq. (8) with the exponent given by
Eq. (7) is obtained in a similar fashion. The only difference
is that at q < 2kF the d subband is centered at momentum
p � kF � q; i.e., it is below the Fermi level and hosts a
single hole with velocity vd � v� q=m. The hole is rela-
tively slow, jvdj< v, which leads [20] to S�q;!� � 0 at
!< �2�q�. When q! 2kF � 0, the center of d subband is
approaching �kF. At larger q, one returns to the particle-
like d subband, but the density operator By in Eq. (14) is
now given by By�x� � dy�x� ��x�.

The ‘‘bosonic’’ route of evaluation of DSF described
first, and the ‘‘fermionic’’ one described second, have a
common region of applicability corresponding to both Q
and � being large. In this limit the fermionic calculation
yields �1 ! 1=2 and �2 ! 3=2; see Eqs. (5) and (7). This
is in agreement with the strong-repulsion limit (K ! 1) of
the result of the bosonic calculation; see Eqs. (4) and (6).
Note that at the special point q � 2	n the exponent�2 can
be found using the hydrodynamic approximation (indeed,
�2 ! 0 at q! 2	n, hence !! �2 limit is accessible
within the effective low-energy description). The hydro-
dynamics yields �2 � K � 1 � 4=� [6,22], in agreement
with the corresponding limit of Eq. (7).

The peculiarity of 1D Bose liquid is that an arbitrarily
weak repulsion between particles destroys condensation.
This renders the perturbation theory developed for higher
dimensions [4] inapplicable. The well-known alternative
method based on the hydrodynamic description of low-
energy excitations [5] also has its limitations, yielding
infinitely narrow resonance in DSF at small q [6]. In this
Letter we demonstrated the existence of power-law singu-
larities in DSF. The two complementary methods of ana-
lytic evaluation of DSF developed here allowed us to find
the corresponding exponents in several regimes.
Evaluation of the exponents in the entire range of parame-
ters remains a challenging problem.
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