
Duality, Thermodynamics, and the Linear Programming Problem in Constraint-Based Models
of Metabolism

Patrick B. Warren and Janette L. Jones
Unilever R&D Port Sunlight, Bebington, Wirral, CH63 3JW, United Kingdom

(Received 9 February 2007; published 7 September 2007)

It is shown that the dual to the linear programming problem that arises in constraint-based models of
metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical
potential analogues, and the objective is to minimize free energy consumption given a free energy drain
corresponding to growth. The interpretation is distinct from conventional nonequilibrium thermodynam-
ics, although it does satisfy a minimum entropy production principle. It can be used to motivate extensions
of constraint-based modeling, for example, to microbial ecosystems.
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In biology, the metabolism of an organism provides
energy and raw materials for maintenance and growth.
As such, an interesting and important question concerns
the application of thermodynamics to metabolic reaction
networks [1–4]. For example, Prigogine and Wiame sug-
gested a long time ago that an organism’s metabolism
might be governed by a minimum entropy production
(MEP) principle [5]. From the physical point of view, a
metabolic reaction network is an excellent example of a
system in a nonequilibrium steady state, since one can
usually assume that the metabolite concentrations are un-
changing after a short transient relaxation period. The
appropriate generalization of thermodynamics and statisti-
cal mechanics to nonequilibrium steady states is a large
field [6], which continues to attract attention to this present
day [7]. In this Letter, we show that a novel thermodynamic
interpretation can be given to the dual linear programming
problem which arises in constraint-based models of me-
tabolism. The resulting interpretation is rigorously defined
and uniquely determined by the mathematics. It is closely
analogous to, but distinctly different from, conventional
nonequilibrium thermodynamics. We also show that it
satisfies an MEP principle similar to that proposed by
Prigogine and Wiame.

Constraint-based modeling (CBM) of metabolic net-
works has been pioneered by Palsson and co-workers [8].
In a typical application, described in more detail below, the
steady-state assumption is combined with a target function
to make a linear optimization or linear programming (LP)
problem. The LP variables are the fluxes through the
various reactions that comprise the network, and the LP
constraints arise from basic considerations of stoichiome-
try and from the reversibility or otherwise of the reactions.
The LP objective function is biologically motivated, for
example, a ‘‘growth’’ reaction is commonly inserted, and
the target is to maximize flux through this reaction to
correspond to maximal growth rate. CBM has been applied
to microorganisms from all three domains of life [9–11]

and has been remarkably successful in predicting pheno-
typic behavior [12–14].

Mathematically, every LP problem has a unique dual
[15]. It was in determining the dual to the CBM LP prob-
lem that we noticed a striking analogy to nonequilibrium
thermodynamics. Let us start therefore with a general
discussion of LP duality, before specializing to the case
of CBM. We recall that the basic or primal LP problem, in
standard form, is to maximize an objective function z �Pn
��1 a�x� given

Pn
��1 Ai�x� � bi (i � 1 . . .m, m< n),

where the x� � 0 are variables, the a� are coefficients, Ai�
is a matrix, and the bi are constants (we use Greek and
Roman indices to emphasize that different components live
in different vector spaces). The dual problem is then to
minimize an objective function w �

Pm
i�1 �ibi subject toPm

i�1 �iAi� � a�, with no restriction on the sign of the
dual variables �i. The LP strong duality theorem guaran-
tees that maxz � minw, provided both problems have
optimal solutions. In addition, at optimality, ‘‘complemen-
tary slackness’’ (CS) conditions hold. To formulate these,
first define the ‘‘slack’’ in the inequalities in the dual
problem to be y� �

Pm
i�1 �iAi� � a�. The CS conditions

state that the inequalities x�y� � 0 are saturated (i.e.,� 0)
at optimality, and only at optimality.

In many applications of LP, the dual problem can be
given an economic interpretation, which has led to the dual
variables being generically known as ‘‘shadow prices’’. We
note that shadow prices can be obtained directly from the
solution to the primal problem [15], so the dual problem
need never be explicitly formulated. This may be the
reason why the remarkably simple structure of the dual
problem in CBM has not been described before. The use of
shadow prices in CBM was pioneered by Varma and
Palsson to assess efficiencies in a model of the central
metabolism of E. coli [16].

Now let us turn to the LP problem in CBM. We start with
the set of chemical rate equations that describe the meta-
bolic reaction network, dci=dt �

P
�Si�v�, where the ci
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are metabolite concentrations, the v� are reaction veloc-
ities or fluxes, and Si� is a stoichiometry matrix giving the
number of moles of the ith metabolite involved in the �th
reaction. Making the steady-state assumption, the chemical
rate equations reduce to a set of flux-balance conditionsP
�Si�v� � 0. At this point, in CBM, attention shifts from

the metabolite concentrations to the reaction fluxes. From
this point of view, the flux-balance conditions become a set
of linear constraints on the v�. In addition, one usually
imposes the ‘‘thermodynamic’’ constraint that v� � 0 if a
reaction is irreversible.

In modern approaches [8], the reactions in the net-
work are elementally and charge balanced. To make the
network ‘‘do’’ something, two kinds of imbalanced re-
actions are typically added. The first, as mentioned al-
ready, is a growth reaction. This reaction drains the end
points of metabolism in the appropriate ratios and repre-
sents the combined effect of the biochemistry subsequent
to metabolism. The flux through the growth reaction (the
growth rate) will be labeled vgr. The second type of im-
balanced reaction is an ‘‘exchange’’ reaction, which rep-
resents the exchange of an extracellular metabolite with
the environment (the model additionally includes trans-
porter reactions which allow extracellular metabolites to
enter and leave the intracellular environment). The ex-
change reactions enable the uptake of food substrates,
trace minerals, dissolved gases, and vitamins, and the
discharge of metabolic waste products. By convention, a
positive (negative) flux through an exchange reaction
represents the discharge (uptake) of the corresponding
metabolite. Exchange reactions may be reversible, or ir-
reversible if discharge only is possible. A special case
arises when one wishes to represent limited availabil-
ity, for example, of a food substrate. In this case the
exchange flux is allowed to become negative to a limited
extent, thus v� � �v

min
� with vmin

� > 0 representing a
‘‘cap’’ on the (negative) reaction flux. The value of vmin

�
is typically empirically determined to agree with experi-
mentally measured uptake rates. Figure 1 shows schemati-
cally how the exchange reactions and the growth reaction

are connected into the rest of the metabolic network. For
high accuracy work, an ATP �adenosine tri-phosphate� !
ADP �adenosine di-phosphate� maintenance reaction with
a specified flux is sometimes included in the model [11].
We omit this here although it can easily be accommodated
with a small extension to the formalism.

The LP problem in CBM is then to find values for the
fluxes v� which maximize vgr subject to the above con-
straints. This is summarized in Table I. Usually it is the
limited availability of substrates through the exchange
reactions that prevents the problem being unbounded.
Technically the LP problem is not quite in the standard
form but it does not take much to make it so.

We formulate the dual to the above (primal) LP problem
following the textbook approach described above. After
some straightforward simplifications, the following picture
emerges. Each metabolite has an associated shadow price
�i which is unrestricted in sign. Each reaction has an
associated constraint, of the form

P
i�iSi� � 0 for revers-

ible and unlimited exchange reactions,
P
i�iSi� � 0

for irreversible and limited exchange reactions, andP
i�iSi� � 1 for the growth reaction. The objective func-

tion is w �
P
i��iSi�v

min
� , where the sum is over the

limited exchange reactions only. The LP problem is to
find values for the shadow prices �i which minimize this
objective function subject to the constraints. Note that,
although the vmin

� appear in the dual objective function
w, these are numerical constants common to both the
primal and dual problems. The actual fluxes v� do not
feature in the dual problem.

We now show that the dual problem admits a striking
thermodynamic interpretation. The motivation is the stan-
dard expression for the free energy change in a chemical
reaction, or reaction affinity, A� �

P
i�iSi�, where the �i

are chemical potentials [6]. The similarity between this
expression and the rules for formulating the dual LP prob-
lem above makes it natural to interpret the shadow prices as
chemical potential analogues. To aid the interpretation, we
rescale the dual problem by a factor �B� < 0, set �i �
��iB�, and write B� �

P
i�iSi� as the analogue of reac-

tion affinity. The resulting thermodynamic formulation of
this rescaled dual LP problem is summarized in Table I. We
have introduced B� to distinguish our interpretation from
conventional nonequilibrium thermodynamics; in general
B� � A�, as explained in more detail below.

Let us discuss the thermodynamic interpretation in
a bit more depth. We see that the constraints assert that
B� � 0 for a reversible reaction, and B� � 0 for an irre-
versible reaction. These are precisely in accord with equi-
librium chemical thermodynamics. In addition, we
interpret the fact that B� � �B� < 0 for the growth reac-
tion to mean that a minimum free energy drain equal to B�

is required for growth. The magnitude of B� sets the overall
energy scale and can be arbitrarily chosen. Finally, in the
rescaled dual LP problem the objective is to minimize

FIG. 1. Schematic metabolic network for a prokaryote like
E. coli, showing intracellular metabolites (open circles), extrac-
ellular metabolites (hatched circles), internal and exchange re-
actions (arrows), and a growth reaction (dashed arrow).

PRL 99, 108101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 SEPTEMBER 2007

108101-2



wB� �
P
�v

min
� jB�j, in other words, a weighted sum of the

free energy consumption associated with the limited ex-
change reactions. At optimality, one has maxz � minw,
hence the growth rate is easily calculated from the solution
to the thermodynamic LP problem using vgr �P
�v

min
� jB�j=B�.

We now show that the formalism satisfies an MEP
principle. To derive this, we consider the internal entropy
production due to the chemical transformations, T _S �
�
P
�v�B�. The sum excludes the exchange reactions

since the flux-balance condition implies the total entropy
production

P
�v�B� � 0 when the sum is over all reac-

tions. It is straightforward to show that z � T _S=B� � w.
Thus, at optimality, the entropy production is ‘‘pinched’’
between the two objective functions. Alternatively, for a
fixed growth rate vgr, one has vgrB� � T _S. Since the
minimum value is attained at the combined solution of
the primal and dual problems, this gives the desired MEP
principle.

What does the dual solution look like for a constraint-
based model of metabolism? To give an example, we
computed the chemical potential analogues for a
genome-scale model of the metabolism of E. coli growing
aerobically on a glucose ‘‘minimal medium’’, for which
uptake of extracellular glucose is the limiting exchange
reaction [17]. Lack of space precludes a detailed discussion
of the results, but we find that the vast majority of chemical
potentials are positive and there is a broad distribution over
several decades of magnitude. An interesting observation
is that the chemical potentials increase with increasing
molecular complexity. This is shown in Fig. 2, using
molecular weight (discounting metal ions) as a stand-in
for molecular complexity. This correlation arises because
the chemical potential of a complex molecule is given
approximately by the sum of the chemical potentials of
its constituent parts. This in turn follows from the CS
conditions which imply B� �

P
i�iSi� � 0 for all reac-

tions with a flux v� � 0 (see further discussion below).
Let us discuss our findings in a wider context. Our

results show that the dual to the CBM LP problem has a
thermodynamic interpretation in which the dual variables

are analogous to chemical potentials. The rules to formu-
late this thermodynamic LP problem are summarized in
Table I. In principle, we could strip away the CBM ‘‘scaf-
folding’’ and let the thermodynamic LP problem stand on
its own, since LP duality guarantees this is equivalent to
solving the original (primal) LP problem. Such a viewpoint
motivates a number of interesting questions.

First, a technical point arises since the primal LP prob-
lem is often degenerate, in the sense that alternative opti-
mal flux distributions exist [18]. This reflects the fact that
multiple pathways may exist in the metabolism. But this is
not a serious problem, for the dual problem will be simi-
larly degenerate but the strong duality theorem and the CS
conditions still hold, allowing one to move from a solution
of the dual problem to a solution of the primal problem,
and vice versa.

A more serious discussion point concerns the relation-
ship to conventional nonequilibrium thermodynamics. For
the reversible reactions, B� � 0 is a constraint. For the
irreversible reactions, the CS conditions (Table I) show that
B� � 0 if there is a flux (v� > 0) through a reaction, and

FIG. 2. Chemical potential analogues (shadow prices) plotted
as a function of metabolite molecular weight for the intracellular
metabolites with �i > 0 in a genome-scale constraint-based
model of E. coli [17]. A normalizing factor is included to
make the �i dimensionless.

TABLE I. The primal and dual linear programming problems in constraint-based models of
metabolism. In the dual objective function, the sum is over the limited exchange reactions only.
The complementary slackness (CS) inequalities are saturated (i.e.,� 0) at optimality, where also
maxz � minw. The shadow prices for the primal problem are given by ��i=B

�.

Primal Dual CS Inequalities

Variables fluxes, v� chemical potentials, �i

Flux balance or thermodynamics
P
�Si�v� � 0 B� �

P
i�iSi�

Reversible reactions v� unlimited B� � 0
Irreversible reactions v� � 0 B� � 0 v�B� � 0
Growth reaction vgr � 0 B� � �B� < 0 vgr�B� 	 B�� � 0
Limited exchange reactions v� � �vmin

� B� � 0 �v� 	 vmin
� �B� � 0

Objective function z � vgr w �
P
�v

min
� jB�j=B

�
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B� < 0 only if there is no flux (v� � 0) through a reaction
(except for the growth reaction where we expect vgr > 0
and hence B� � �B�). This presents a sharp contrast to
conventional nonequilibrium thermodynamics where a flux
through a reaction (v� > 0) is associated with a (negative)
affinity driving force A� < 0. This clearly demonstrates
that B� � A�, and the thermodynamics described in
Table I is not simply the same as conventional nonequilib-
rium thermodynamics. We must therefore regard the rules
described in Table I as describing a novel but tightly con-
strained thermodynamics for the CBM class of problems,
derived from the (unique) dual to the primal LP problem.
Whether the close analogy to equilibrium chemical ther-
modynamics (and the unexpected appearance of an MEP
principle) is indicative of deeper principles or not remains
a problem for future investigation. It would, for example,
be an interesting exercise to compare the E. coli shadow
prices with what is known about the thermodynamic meta-
bolic state of this organism [2]. We should emphasize that
our MEP principle is couched in terms of B� and not A�,
and therefore our results do not constitute a proof of the
original proposition of Prigogine and Wiame [5].

Another interesting remark is that the choice in the
primal LP problem to maximize the flux through a growth
reaction seems to be ‘‘pure biology’’. Experiments dem-
onstrate that this works well under controlled conditions
[12,13], and it can be supported by examining popula-
tion dynamics for continuous culture growth in a chemo-
stat [19]. Other choices could and perhaps should be made
in different circumstances [20–22]. In terms of the ther-
modynamic LP problem, this biologically motivated
component is translated into the existence of a growth
reaction with a minimal free energy drain B�. We could
turn this observation to our advantage, to suggest exten-
sions to the CBM approach which are perhaps not ob-
vious in the primal LP problem. Consider, for example,
metabolism in a microbial ecosystem, comprising mul-
tiple species which share a pool of common extracellular
metabolites. The obvious generalization of the thermo-
dynamic LP problem is to include a growth reaction with
a minimal free energy drain B� for each organism and to
seek to minimize the free energy consumption of the
ecosystem through the exchange reactions of the extracel-
lular metabolites. Of course LP duality means there is a
corresponding primal model (in this case the primal ob-
jective function becomes a weighted sum of growth rates
[23] ). Further exploration of this we leave to future
work.
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