
From Elasticity to Hypoplasticity: Dynamics of Granular Solids

Yimin Jiang1,2 and Mario Liu1

1Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
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‘‘Granular elasticity,’’ useful for calculating static stress distributions in granular media, is generalized
by including the effects of slowly moving, deformed grains. The result is a hydrodynamic theory for
granular solids that agrees well with models from soil mechanics.
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Granular media has different phases that, in dependence
of the grain’s ratio of deformation to kinetic energy, may
loosely be referred to as gaseous, liquid, and solid. The first
phase is relatively well understood: Moving fast and being
free most of the time, the grains in the gaseous phase have
much kinetic, but next to none elastic, energy [1]. In the
denser liquid phase, say in chute flows, there is less kinetic
energy, more deformation, and a rich rheology that has
been scrutinized recently [2].

In statics, with the grains deformed but stationary, the
energy is all elastic. This state is legitimately referred to as
solid because static shear stresses are sustained. If granular
solid is slowly sheared, the predominant part of the energy
remains elastic. There is no theory capable of accounting
for its statics and dynamics, and no understanding helps to
render its physics transparent.

Two grains in contact are initially very compliant, be-
cause so little material is being deformed. As this geomet-
ric fact should also hold on larger scales, for many grains,
diverging compliance at diminishing compression is a
basic characteristic of granular solids, and the reason it is
sensible to abandon the approximation of infinitely rigid
grains. Starting from this observation, a theory termed GE
(for ‘‘granular elasticity’’) was constructed to account for
static granular stress distributions. Taking the energyw as a
function of uij, the elastic contribution to the total strain
field "ij, we specify [3]
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aij are employed throughout this Letter). The elastic coef-
ficient B, a measure of overall rigidity, is a function of the
density. Denoting �g as the granular material’s bulk den-
sity, and e � �g=�� 1 as the void ratio, we take B �
B0�2:17� e�2=�1:3736�1� e��, with B0, � > 0 two ma-
terial constants. The elastic energy w contributes �ij �
�@w=@uij to the total stress �ij. And since the elastic
stress is the only contribution in statics, force balance reads
rj�ij � rj�ij � �Gi. This was solved for three classical
cases: silos, sand piles, and granular sheets under a point
load, resulting in rather satisfactory agreement to experi-

ments, see [4]. Moreover, the energy w (with P � 1
3�‘‘) is

convex only for �s=P 	
��������
2=�

p
, implying no elastic solu-

tion is stable beyond it. Identifying this as the yield surface
gives � 
 5=3 for natural sand.

When granular solid is being slowly sheared, we must
expect a qualitative change of its behavior: In addition to
moving with the large-scaled velocity vi, the grains also
move and slip in deviation of it—implying a small but
finite granular temperature Tg. As a result, some of the
grains are temporarily unjammed, with enough time to
decrease their deformation. This depletes the elastic energy
and relaxes the static stress. Stress relaxation is typical of
viscoelastic systems such as polymers. Granular media are
similar, but they possess a relaxation rate that vanishes with
Tg. This is the reason they return to perfect elasticity when
stationary. The basic physics of granular solids, viscoelas-
ticity at finite Tg, is in fact epitomized by a sand pile, which
holds its shape when unperturbed, but fails to do so when
tapped. A set of differential equations termed granular
solid hydrodynamics (GSH) is derived consistently below
starting from GE, with this simple physics as the only
additional input.

Conservation of density and momentum always holds,

 @t��ri��vi��0; @t��vi��rj��ij��vivj���Gi;

(2)

where Gi is the gravitational constant. In granular gas or
liquid, the stress �ij has the same structure as in the
Navier-Stokes equation, though the viscosity is a function
of the shear. In granular solid, the stress is not usually taken
to be given in a closed form. Instead, constitutive relations
are employed. These relate the temporal derivatives of
stress and strain, giving @t�ij as a function of vij �

1
2 �

�rivj �rjvi� and density (where @t is often replaced by
an objective derivative, say, from Jaumann).

Hypoplasticity, or HPM (for hypoplastic model), is a
modern, well-verified, yet comparatively simple theory of
soil mechanics [5]. It is quite realistic in the above speci-
fied regime of solid dynamics, though less appropriate for
determining static stress distributions. The starting point is
the rate-independent constitutive relation,
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where the coefficients Hijk‘, �ij, � are functions of �ij, �,
specified using experimental data mainly from triaxial
apparatus. Great efforts are invested in finding accurate
expressions for them, of which a recent set [5] is � � 1=3,

 Hijk‘ � f�F2�ik�j‘ � a2�ij�k‘=�2
nn�; (4)
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where [with a � 2:76, hs � 1600 MPa, ed � 0:44ei, ec �
0:85ei, e�1
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If GSH as derived below from the idea given above
reduces to HPM under certain conditions, we would
have, on one hand, captured valuable insights into the
physics of this field-tested theory, understood its range of
validity, how to widen it by appropriate modifications, and
on the other hand, obtained a broadside verification of
GSH, along with the physical picture embedded in it. As
we shall see, GSH indeed reduces to Eq. (3) for a stationary
Tg, with Hijk‘, �ij, � given in terms of Mijk‘ �

�@2w=@uij@uk‘ (known from GE) and four new scalars
[combinations of transport coefficients such as viscosities
and stress relaxation rates, see Eq. (17)]. Although quite
different from Eqs. (4) and (5), the new Hijk‘, �ij, � yield
very similar accounts in all cases we have considered.

A large part of GSH may be duplicated from the hydro-
dynamic theory of transient elasticity, constructed to de-
scribe polymers [6]. This theory accounts for any system in
which both the elastic energy and stress relax, irrespective
of how this happens microscopically—whether due to
polymer strands disentangling, or the grains unjamming.
(A formal and rather more detailed derivation of GSH can
be found in an accompanying paper [7].) The stress�ij and
the elastic strain uij are determined by

 �ij � �ij � �
D
ij; �@t � vkrk�uij � vij � Xij; (6)

where �ij � �@w=@uij is the elastic stress and vij �
1
2 �

�rivj �rjvi�. �Dij and Xij are the irreversible contribu-
tions, given by Onsager relations that connect the ‘‘cur-
rents,’’ �Dij, Xij, to the ‘‘forces,’’ vij, �ij,

 �Dij � ��� �g�v
0
ij � �� � �g��ijv‘‘ � 	�ij; (7)

 Xij � �	vij � 
�
0
ij � 
1�ij�‘‘ (8)

 � �	vij � u
0
ij=�� �iju‘‘=�1: (9)

The coefficients �, � , �g, �g > 0 in �Dij are viscosities; see
below for their differences. Calculating @t�ij as in Eq. (3),
they all vanish for steady velocities, @tvi � 0. The term

Xij, accounting for the relaxation of the elastic strain uij, is
rather more consequential. Equation (9) is obtained by
taking the derivative of Eq. (1), �ij � �@w=@uij �����

�
p
�B��ij � 2Au0

ij� �A�u2
s=2

����
�
p
��ij, with the relaxa-

tion times given as 1=� � 2
A
����
�
p

, 1=�1 � 3
1

����
�
p
�B�

1
2Au2

s=�2�. (Note A � B=�.) The Onsager coefficient 	
is, for simplicity, taken as a scalar.

The transport coefficients �, �g, � , �g, �, �1, 	 are
functions of thermodynamic variables: �, Tg, uij. We
assume they are strain independent, while noting three
points: (i) Constant �, �1 implies strain-dependent 
, 
1.
Choosing the former as constant, and not the latter, is at
this stage, before more experimental data are considered,
preliminary, and not crucial: All four figures below retain
their form also with 
, 
1 taken as constant. (ii) As Xij
vanishes identically with Tg, an obvious and simple as-
sumption is

 1=� � �Tg; 1=�1 � �1Tg; (10)

with �, �1, �1=� � �=�1 functions of the density, but
independent from strain and Tg. (iii) Being reactive, 	 is
not restricted in its magnitude by that of 
, 
1. It may stay
constant while 1=�, 1=�1 vary—though it must eventually
vanish for 1=�, 1=�1 ! 0, as 	 � 0 in statics.

The above hydrodynamic theory is closed if we amend it
with an equation of motion for Tg. In thermodynamics, the
energy change dw from all microscopic, implicit variables
is subsumed as Tds, with s the entropy and T � @w=@s its
conjugate variable. From this, we divide out the kinetic
energy of granular random motion, executed by the grains
in deviation from the ordered, large-scale motion, and
denote it as Tgdsg, calling sg, Tg � @w=@sg granular
entropy and temperature. In other words, we consider
two heat reservoirs, sg and s, with the second accounting
for the rest of all microscopic degrees of freedom, espe-
cially phonons. In equilibrium, sg is part of the total
entropy, and (because of its comparatively small number
of degrees of freedom) essentially zero. But when the
granular system is being tapped or sheared, rendering
Tg � T as a result, sg turns into a leaky, intermediary
heat reservoir, fed by macroscopic motion while leaking
energy into s—an important reason for the novelty of
granular physics. Note sg is the generalization of the
entropy in granular gas [1] to solid densities. The balance
equations for s, sg are @ts�rk�svk� � R=T, @tsg �
rk�sgvk� � Rg=Tg, where

 R � �v2
s � �v

2
‘‘ � 
�

2
s � 
1�

2
‘‘ � T

2
g; (11)

 Rg � �gv
2
s � �gv

2
‘‘ � T

2
g: (12)

(Diffusion of T, Tg is neglected, but easily included when
needed.) The first two terms in either entropy productions
R, Rg account for viscous heating, how any shear and
compressional flows fill up both heat reservoirs at the
same time. The next two terms in R account for the
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dissipation from stress relaxation, as given by transient
elasticity. The term T2

g (with  > 0) describes how the
energy seeps from sg into s, say, because the kinetic energy
of random motion is converted into phonons. The form
T2

g is determined by it being positive definite, or alter-
natively, by taking sg as a slow variable, and requiring it to
satisfy the relaxation equation _sg � �Tg.

With Eqs. (1), (2), (6), (7), and (9)–(12), GSH is com-
plete. It especially contains the equilibrium case�ij � �ij,
in which the dissipative fields vanish, �Dij, Xij � 0. Off
equilibrium, these two fields are finite, and we calculate
@t�ij assuming @tvi � 0, from Eqs. (6), (7), and (9),

 @t �ij � �1� 	�@t�ij � �1� 	�Mijk‘@tuk‘

� �1� 	�Mijk‘��1� 	�vk‘ � u0
k‘=�� �k‘u‘‘=�1�:

(13)

As mentioned above, the energy w loses its convexity at
�s=P �

��������
6=5

p
, and no static, elastic solution is possible

beyond this ratio. Therefore, it was identified as yield.
Given Eq. (13), the same identification holds dynamically:
The loss of convexity implies that one of the six eigenval-
ues ofMijk‘ � �@

2w=@uij@uk‘ (written as a 6� 6 matrix)
vanishes at this point, and a strain rate along the associated
direction yields vanishing stress rate.

For Rg � 0, when sg is being produced and leaking at
the same rate, we have a stationary Tg, given as

 Tg �
������������
�g=

q �����������������������������������
v2
s � ��g=�g�v

2
‘‘

q
: (14)

Inserting Eqs. (10) and (14) into (13), we retrieve Eq. (3),
with

 Hijk‘ � �1� 	�2Mijk‘; � � �g=�g; (15)

 �ij � �1� 	�Mijk‘���=�1���k‘ � u
0
k‘��

������������
�g=

q
: (16)

HPM has 43 free parameters (36� 6� 1 forHijk‘, �ij, �),
all functions of the stress and density. Expressed as here,
the stress and density dependence are essentially deter-
mined by Mijk‘ that (with � � 5=3 and B0 � 8500 MPa)
is a known quantity [4]. For the four free constants, we take
 

1� 	 � 0:22;
�
�1
� 0:09;

�g
�g
� 0:33; �

������
�g


s
� 114;

(17)

to be realistic choices, as these numbers yield satisfactory
agreement with HPM. Their significance is as follows:
�g=�g � 0:33 implies shear flows are 3 times as effective
in creating Tg as compressional flows. �=�1 � 0:09 means,
plausibly, that the relaxation rate of shear stress is 10 times
higher than that of pressure. For a purely elastic system,
Eq. (3) is replaced by @t�ij � Mij‘kv‘k. Therefore, the
factor �1� 	�2 accounts for an overall, dynamic softening
of the static compliance tensorMij‘k, a known effect in soil
mechanics [8]. Finally, � controls the stress relaxation rate

for given Tg, and
������������
�g=

q
how well shear flow excites Tg.

Together, �
������������
�g=

q
� 114 determines the relative weight

of plastic versus reactive response. (Note j�ijj=jHijk‘j 

ju0
k‘j � 114=�1� 	� is, for ju0

ijj around 10�3, of order
unity).

Next, we compare Eqs. (15) and (16) to (4) and (5) in
their results with respect to ‘‘response envelopes,’’ a stan-
dard test in soil mechanics for rating constitutive relations
[5]. Axial symmetry of the triaxial geometry is assumed,
with �ij, vij diagonal, and �1 � �xx � �yy, �3 � �zz,
v1 � vxx � vyy, v3 � vzz, P � 2

3�1 �
1
3�3, q �

�3 � �1, �2
s �

2
3 q

2, d � �v1 � v3�dt, d" � ��2v1 �

v3�dt. Starting from a point in the stress space (spanned
by �1, �3 in Fig. 1 and �s, P in Fig. 2), one deforms the
system for a constant time dt, at given strain or stress rates,
while recording the change in the conjugate quantity.
Varying the direction, the input is a circle around the
starting point, but the response envelopes show deforma-
tion characteristic of the system, or the constitutive relation

FIG. 1. The stress changes d�1, d�3, calculated using GSH
(granular solid hydrodynamics) and HPM (hypoplastic model),
for a given strain rate starting from different points (depicted as
crosses) in the stress space spanned by �1, �3. The strain rate has

varying directions but a constant amplitude,
��������������������
2v2

1 � v
2
3

q
, such

that the applied strain changes form circles around each cross
(not shown).

FIG. 2. The change in strain d, d" for a given stress rate
starting from different points in the stress space, spanned by �s,
P. The amplitude of the stress rate

�����������������������
dP2 � dq2

p
is constant. See

Fig. 3 for an explanation of the ‘‘flow direction.’’
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to be rated. Figures 1 and 2 show, respectively, the re-
sponding stress and strain envelopes, for the void ratio e �
0:66, calculated using GSH and HPM. The similarity in
stress dependence and anisotropy is obvious.

In Fig. 3, one strain envelope is blown up for a more
detailed comparison, using the extended version of re-
sponse envelope as given in [9]. Here, the applied stress
rate is reversed at halftime, such that the system returns to
the starting point in stress space at the end. The responding
strain change, depicted as deflected, straight dotted lines,
does not return to the origin. Both GSH and HPM predict
that the end points from all angles of stress changes (some
of the angles are given at the deflection points) form a
straight line OA. (Instead of a line, a narrow ellipse is
reported in the 2D simulation of [9]. This may be a result
of the fact that the stationarity of Tg is briefly violated
when the stress rate is reversed, during which the system is
rather less plastic.) OA’s angle � in strain space is usually

referred to as the ‘‘flow direction,’’ while the direction in
stress space, along which the plastic deformation is largest
(with the strain starting at O and ending at A) is called the
‘‘yield direction’’�. Since they are not equal, the flow rule
is ‘‘nonassociated.’’ In Fig. 4, the flow direction �, the
yield direction �, and the maximal plastic strain (the
length of OA), are displayed as functions of �s=P, with
P � 0:2 MPa. Again, the similarity between both theories
is obvious.

We take all this to be a preliminary confirmation for the
basic idea of slowly sheared granular solids being visco-
elastic, and also for GSH as the appropriate hydrodynamic
theory. Next, it should be interesting to use GSH for
circumstances in which Tg is not stationary and the stress
rate possesses a more complicated form than that given by
Eqs. (3), (15), and (16). These include especially sudden
changes in the direction of the strain rate [8], such as in
cyclic loading or sound propagation. Also, one needs to
understand whether GSH holds at transitions from granular
solid to liquid, from vij � 0 to vij � 0 for a stationary
stress, @t�ij � 0, in phenomena such as shear banding.
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FIG. 3. A pair of blown-up strain envelopes from Fig. 2, with
the starting point O at P � 0:2, �s � 0:16 MPa. The stress rate
is reversed at halftime, and the stress returns to the origin O at
the end. The strain (depicted as dotted lines) gets deflected, and
ends somewhere along OA, a straight line for both GSH and
HPM.�, the angle ofOA, is called the ‘‘flow direction’’;� is the
‘‘yield direction,’’ along which the plastic flow is maximal, with
the strain ending at A.

FIG. 4. Yield direction, flow direction, and the maximal plastic
strain (length of OA), versus �s=P, for P � 0:2 MPa, calculated
employing GSH and HPM, respectively.
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