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An inertial mass of a vortex can be calculated by driving it around in a circle with a steadily revolving
pinning potential. We show that in the low-frequency limit this gives precisely the same formula that was
used by Baym and Chandler, but find that the result is not unique and depends on the force field used to
cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula
for the vortex mass. We study both the long-range and short-range properties of the solution. We agree
with earlier results that the nonzero compressibility leads to a divergent mass. From the short-range
behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges
logarithmically when the radius of this potential tends to zero.
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Introduction.—Conflicting results on the mass of a
quantized vortex in a neutral superfluid can be found in
the literature. Popov [1] and Duan [2] argue that the mass
per unit length is infinite, while Baym and Chandler [3]
argue that it is negligible. We have developed a method for
studying the problem of vortex mass and applied it to the
Gross-Pitaevskii model [4,5] for superfluids, which is
known to describe weakly interacting bosonic atoms
well, and is believed to give a useful qualitative description
of superfluid 4He. We have obtained new analytical results
and laid the basis for detailed numerical calculations. First,
we show that our method is equivalent to the method
described by Baym and Chandler. Second, we specialize
to the Gross-Pitaevskii model and derive a new and com-
pact formula for the vortex mass. Third, we agree with
Popov and Duan that there is a divergent contribution to the
mass due to the expansion of the fluid at large distances
from the vortex core. Fourth, we get the new result that the
mass is sensitive to the form of the pinning force that
sustains the motion of the vortex in the presence of the
Magnus force, and that the mass diverges as the range of
this pinning force tends to zero. This suggests that an
unambiguous vortex mass may not exist, and that inertial
effects in vortex dynamics may be scenario dependent [6].

Vortex motion is important in many physical contexts,
from collective modes in neutron star matter [7] to decay of
superconducting currents via quantum nucleation of vorti-
ces [7] and quantum turbulence in superfluids [8]. The
universal topological constraints on vortex behavior are
an important asset in understanding these diverse and
important phenomena; vortex inertial mass is a salient
uncertain parameter in the otherwise highly constrained
vortex dynamics. Since theories of a universal vortex mass
based on different assumptions do not agree, our contribu-
tion here is to consider a specific scenario in which a vortex
mass may be identified without ambiguity.

To ascertain the mass of an object in the conventional
way one determines the acceleration due to an applied
force. Most of the methods that have been used so far to
determine the mass of a vortex in a superfluid have, how-
ever, avoided the complexity of actual vortex acceleration.
In Popov’s [1] work analogies between superfluidity and
electrodynamics are used, where vortices correspond to
lines of electric charge and sound waves to electromagnetic
waves. The energy E needed to form a vortex at rest
is calculated, and the mass MV is found by using the
Einstein formula E � MVc2

s , where cs is the sound velocity
in the superfluid. The long range of the field due to a
line charge leads to an infrared divergence of the self-
energy, and so to an infrared divergence of the vortex
mass. Duan gets similar results which he argues are due
to the breaking of gauge invariance for the neutral super-
fluid. In the Baym and Chandler work [3], the calculation
of mass is based on a calculation of the extra energy
associated with a vortex forced to move with a constant
velocity relative to the fluid. The authors argued that this
energy is primarily associated with the core of the vortex,
and that this is small, but they did not describe a detailed
calculation.

Accelerating vortices can be analyzed in some theories,
however. In classical incompressible hydrodynamics the
mass of a hard-cored vortex can be calculated from the
resonant frequency at which the vortex can move, without
any applied force, on a circular orbit [9]. The mass ob-
tained is just the finite mass of fluid displaced by the vortex
core, plus the mass of the material contained in the core. In
the Gross-Pitaevskii model, it has been shown that damp-
ing due to radiation of phonons is too strong to leave any
trace of a similar resonance, unless the vortex core is
loaded with a large additional mass [10,11]. We have
carried out a more general and detailed calculation similar
to that of Quist [11], and we get similar results, even when
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the bulk modulus is much higher than it is in the Gross-
Pitaevskii model [6].

In the classical incompressible fluid, the same vortex
mass can also be found by analyzing circular vortex motion
under an applied external force (acting on the core). A
vortex moving with constant velocity v relative to the fluid
must be acted on by a transverse force, equal to �s�v per
unit length, where � is the circulation round the vortex and
�s the superfluid density. This is the Magnus effect, which
follows from conservation of momentum and circulation,
and so applies to vortices in quantum fluids as well as
classical. We believe it may be an important omission in
earlier work, that remarks such as ‘‘Now give the vortex an
instantaneous velocity v’’ [2,3] are made, without consid-
ering how the necessary force is to be applied. We there-
fore consider an external ‘‘pinning’’ potential, which repels
the fluid particles, and hence attracts the low-density vor-
tex core. By moving this potential around a circular orbit,
we drag the vortex. We take it as our definition of the vortex
mass, that the force required to do so will differ from the
Magnus force by the centripetal force, equal to the product
of vortex mass and acceleration. An orbiting vortex will
generally excite waves, requiring an azimuthal force to
maintain constant speed against radiative damping; we
avoid this issue by considering slow enough orbits that
this effect becomes negligible.

We therefore begin by considering the perturbatively
slow circular motion of a driven, pinned vortex in a homo-
geneous quantum fluid, and by showing that our mass
definition gives the Baym-Chandler formula [3] in the
low orbit frequency limit.

Perturbation theory in a rotating frame.—We consider a
many-body Hamiltonian H that includes the kinetic energy
of the atoms, the translation-invariant interaction UI be-
tween them, and a moving pinning potential Vp�r; t�, which
we take to have an instantaneous axis of symmetry. We
take it to move around a circle of radius a at a constant
angular frequency !. We ignore the confining boundaries
that hold the system in place and hold the density constant.
In a coordinate system that rotates with the pinning poten-
tial, the Hamiltonian becomes time independent; using
polar coordinates centered on the axis of the pinning
potential, rather than on the center of the circular orbit,
we replace @t by @t � v@y �!@�, where v � a!. We
therefore consider an eigenstate of the rotating, shifted
frame Hamiltonian,

 HR � H �!�i@� � 1� � iv@y; (1)

where we have chosen units with @ � 1. We write H0 �
HR � iv@y and treat the term proportional to v as a per-
turbation. The vortex state for v � 0 is j�0i, with total
energy E0. To leading order in v we thus have

 j�vi � �1� �E0 �H
0��1�iv@y��j�0i; (2)

 Ev � E0 � v2h�0j@y�E0 �H0��1@yj�0i: (3)

The expectation value of the force exerted by the pinning
potential is, to lowest order in v,

 Fx � 2v=h�0j�@xVp��E0 �H0��1@yj�0i: (4)

We can use the commutation relation

 �@x;H
0� � @xVp � i!@y (5)

to rewrite this as
 

Fx � ivh@x 0j@y 0i � ivh@y 0j@x 0i

� 2v!h 0j@y�E0 �H0��1@yj 0i: (6)

The first two terms on the right can be shown, by applying
Stokes theorem, to give �v times the circulation [12], and
this is the standard form for the Magnus force. The coef-
ficient of the acceleration v! is our vortex mass MV .
Comparing it with (3) above, we recover the formula of
Baym and Chandler [3],

 MV � �
@2Ev
@v2 ; (7)

but now derived from the force on an accelerating vortex.
Rather than proceeding further with the full many-body

problem, we specialize to the Gross-Pitaevskii mean field
theory [4,5]. We study the asymptotic properties of the
solution for large distances, and display the divergent
contribution to the vortex mass for this compressible quan-
tum fluid. We then study the short-range properties and
consider the influence of the form of the pinning potential
on the vortex mass. We find that the vortex mass depends
strongly on the pinning potential, and diverges when its
radius goes to zero. Finally, we briefly consider the impli-
cations of these results.

Gross-Pitaevskii equation and compressibility.—We
consider the Gross-Pitaevskii equation in a frame of refer-
ence moving with speed v, which takes the form, in
appropriately rescaled units [13],

 ��r2 � Vp�r� � �j j
2 � 1� �!�i@� � 1�� � �iv@y :

(8)

The vortex solution for the limit v! 0 has the form
studied by Gross and Pitaevskii [4,5],  0�r� exp�i��, where
 0 satisfies

 �  000 �
1

r
 00 �

1

r2  0 � �Vp � j 0j
2 � 1� 0 � 0; (9)

we take  0 to be real. We use the methods of Fetter [14], so
that, to first order in perturbation theory, we write the
solution as

  v �  0�r�e
i� �

X
m�0;2

v�m�r�e
im�: (10)

We can substitute this back into Eq. (8) to get the equation,
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to first order in v,
 X
m�0;2

�
��00m �

1

r
�0m �

m2

r2 �m � �Vp � 2 2
0 � 1� im!��m

�  2
0�
	
2�m

�
eim� �

cos�
r

 0 � i sin� 00; (11)

we can take �m to be real. In this Letter we discuss the limit
!! 0 of Eq. (6), and in this limit the Galilean invariance
of Eq. (9) in the region where the pinning potential is zero
gives a particular integral

 �0 � �
1

4
r 0; �2 �

1

4
r 0: (12)

This satisfies the boundary conditions for small r, but a
solution (f0, f2) of the homogeneous equation
 

�f00m�
1

r
f0m�

m2

r2 fm� �Vp� 2 2
0 � 1�fm� 2

0f2�m � 0

(13)

must be added to meet the boundary condition at r! 1.
For large r we use f
 � f0 
 f2, which satisfies the

homogeneous equation

 

H�� H��
H�� H��

� �
f�
f�

� �
� 0; (14)

where
 

H�� � H�� � �
2

r2 ;

H�� � �
d2

dr2 �
1

r
d
dr
�

2

r2 � Vp � 3 2
0 � 1;

H�� � �
d2

dr2 �
1

r
d
dr
�

2

r2 � Vp �  
2
0 � 1:

(15)

The two solutions of the homogeneous equation bounded
at large r fall off like f� � 1=r and f� � exp��

���
2
p
r�=

���
r
p

,
and there is an unbounded solution with f� � r, which can
be used to cancel the dominant term in �r 0=2. We thus
look for a bounded solution of Eq. (11) of the form

 �� � f�; �� � f� � r 0=2: (16)

To use the Baym-Chandler formula for the centrifugal
force in Eq. (6), we can calculate the perturbed wave
function to first order in v, and then calculate the excess
energy that it contributes. This gives, with the use of
Eqs. (9), (14), and (15),

 MV � 4�
Z 1

0

�
f�f� �

1

2
r 0

�
H�� H��
H�� H��

� �

�
f�

f� �
1
2 r 0

� �
rdr;

� 4�
Z 1

0

��
f� �

1

2
r 0

�
 00 �

f�
r
 0

�
rdr: (17)

To find out whether the effects of the compressibility at
large r give rise to a divergent vortex mass, as Popov [1]
and Duan [2] have argued, we must find the asymptotic
behavior of solutions of Eq. (14) for large r and substitute
this into Eq. (17). We have  0 � 1� 1=2r2. Bounded
solutions of the homogeneous equation have the form

 f� �
1

2r
; f� �

1

2
r 0 �

1

2r
lnr�

a1

2r
; (18)

the coefficient a1 is determined by the small r boundary.
The potential energy given by the f� term gives an inte-
grand proportional to r�1, and so gives the logarithmically
divergent expression for mass found by Popov [1] and
Duan [2]. For real systems this integral will be cut off at
large distances by the finite size of the system, the presence
of other vortices, or by nonzero frequency effects.

Influence of the pinning potential.—To study the influ-
ence of the pinning potential Vp we take the specific case
of a hard core repulsive potential of radius rc, so that
 0�r� � 0 for r  rc. The particular integral given by
Eq. (12) for the !! 0 limit vanishes at r � rc, so we
must add solutions of the homogeneous equation that also
vanish there in order to satisfy the boundary conditions for
large r. To study these we go back to the representation
used in Eqs. (11)–(13). If rc � 1, two independent solu-
tions for small r that vanish at r � rc can be constructed by
combining solutions regular and irregular at the origin,
and, close to rc where  2

0 is small, these have the forms

 f�1�0 � �

�
ln
rc
2
� �

�
J0�r� �

�
2
Y0�r�; f�1�2 � 0;

f�2�0 � 0; f�2�2 �
2

r2
c
J2�r� � �

r2
c

16
Y2�r�:

(19)

Here J, Y are Bessel functions and � is the Euler constant.
The solution to lowest order in  0 is then

  � ei�
�
 0 � v

�
ir
2
 0 sin�� a1�

�1�
0 e

�i� � a2�
�2�
2 e

i�
��
;

(20)

where a1, a2 are real.
Determination of these two coefficients requires a de-

tailed integration of the homogeneous part of Eqs. (14) and
(15), but there is an important constraint placed on them by
the fact that the Magnus force has magnitude 2�v. For a
hard core potential of radius rc the force per unit length can
be written as

 Fx � rc
Z 2�

0
j@r �rc; ��j2 cos�d�: (21)

From Eqs. (19) and (20) we get, at r � rc,

 <@r� e�i�� �  00 �
v
rc
�a1 � a2� cos�; (22)

and the known value of the Magnus force gives
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  00�rc��a1 � a2� � 1: (23)

Energy considerations show that a2 should be small,
since a value of order unity would make a contribution of
order r�2

c to Eq. (17), so a1 must be close to 
1. The
dominant contribution to Eq. (17) is

 MV � 4�
Z R

rc
a1 lnrcJ0�r�

�
 00 �

 0

r

�
dr; (24)

where R is a length of the order of unity. This shows that
the vortex mass is sensitive to the form of the pinning
potential, and diverges logarithmically as the core radius
of the pinning potential tends to zero. It is the high quan-
tum pressure near rc that leads to the large kinetic energy
for small rc.

We were actually led to this result by a different ap-
proach in which we ignored the nonlinearity of the equa-
tion for small r, and matched the solution to a region of
incompressible flow for large r. This simplified model
allowed us to get an exact expression of the vortex mass
which displays this logarithmic divergence, and for which
the wave function has the same general features at small r.
This will be discussed elsewhere [6].

Discussion.—We have shown how to obtain an expres-
sion for the inertial mass of a stable quantized vortex in an
infinite neutral superfluid by subjecting it to a straight,
circularly symmetric, pinning potential Vp which is slowly
and steadily rotated about a parallel axis whose distance a
from the vortex is large compared with the size of the
vortex core. The vortex has a steady state in a frame of
reference that rotates about this axis of rotation, with the
same angular velocity ! that the pinning potential rotates.
We use perturbation theory to study this steady state, and to
find the force which the pinning potential exerts on the
vortex to keep it in a steady rotation. The leading term in
this expansion, proportional to v, gives the Magnus force,
in a form which is closely analogous to the Magnus force
acting on a moving vortex in classical fluid mechanics. The
next term, proportional to v!, has a coefficient that can be
interpreted as an inertial mass of the vortex.

It is essential to have a pinning potential to stabilize the
position of the vortex in a rotating system, and it has to be
strong enough to hold the vortex against the Magnus effect

and the centrifugal force. We agree with Popov and Duan
that the mass determined this way is logarithmically di-
vergent in the low-frequency limit, and we have shown that
it depends sensitively on the form of the pinning potential,
diverging logarithmically as the radius of the pinning
potential tends to zero.

An important tentative conclusion of this work is that
‘‘the mass’’ of a vortex is not well defined, but depends on
the process by which the mass is measured. We shall
discuss this further in more detail elsewhere.

We are grateful for the hospitality of the Aspen Center
for Physics, where this work was started, and for the partial
support provided by the U. S. National Science
Foundation, Grant No. DMR-0201948.

[1] V. N. Popov, Zh. Eksp. Teor. Fiz. 64, 672 (1973) [Sov.
Phys. JETP 37, 341 (1973)].

[2] J. M. Duan, Phys. Rev. B 49, 12 381 (1994).
[3] G. Baym and E. Chandler, J. Low Temp. Phys. 50, 57

(1983).
[4] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[5] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov.

Phys. JETP 13, 451 (1961)].
[6] J. R. Anglin and D. J. Thouless (to be published).
[7] W. F. Vinen, in Vortex Lines in Liquid Helium II, edited by

C. J. Gorter, Prog. in Low Temp, Phys. Vol. 3 (North-
Holland, Amsterdam, 1961), Sec. 6, p. 1.

[8] W. F. Vinen and R. J. Donnelly, Phys. Today 60, No. 4, 43
(2007).

[9] H. Lamb, Hydrodynamics (reprinted by Dover
Publications, New York, 1945), 6th ed. pp. 202–249.

[10] E. Demircan, P. Ao, and Q. Niu, Phys. Rev. B 54, 10 027
(1996).

[11] M. J. Quist, Phys. Rev. B 60, 4240 (1999).
[12] D. J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett. 76,

3758 (1996).
[13] When we calculate the vortex mass per unit length in these

units, the result has to be multiplied by @
2=g, where g is a

coefficient of the j j2 term in the unrescaled equation.
For a dilute Bose gas, @2=g � m=�4�a�, where m is the
particle mass and a the s-wave scattering length. In
general @

2=g � �0�
2, where �0 is the ambient mass

density and � the so-called healing length.
[14] A. L. Fetter, Phys. Rev. 138, A709 (1965).

PRL 99, 105301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 SEPTEMBER 2007

105301-4


