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In spatially extended Turing-unstable systems, parameter variation should, in theory, produce only fully
developed patterns. In experiment, however, localized patterns or solitons sitting on a smooth background
often appear. Addition of a nonlocal nonlinearity can resolve this discrepancy by tilting the ‘‘snaking’’
bifurcation diagram characteristic of such problems.
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Pattern formation is a widespread consequence of non-
linearity in spatially extended systems [1]. In simulations
of model systems, a pattern typically appears spontane-
ously at a modulational instability (MI) threshold when a
system parameter is varied. In subcritical cases, there is an
abrupt switch into a large-amplitude pattern, which persists
below the MI threshold, until collapse to the unpatterned
state at a saddle-node (SN) bifurcation. A typical bifurca-
tion diagram is shown in Fig. 1. In corresponding experi-
ments, the expected abrupt appearance of a fully developed
pattern is not always observed, however. Instead, as the
driving parameter is increased, localized states (LS) [2]
may appear spontaneously, multiplying as the system is
driven harder and perhaps eventually merging into an
extended pattern. Figure 2(a) is an example from optics,
Fig. 2(b) in a gas-discharge system.

This spontaneous appearance of LS as a parameter is
changed is unexpected, because in model systems, it has
been proven [3] that their existence range is smaller than,
and lies wholly within, the range (SN, MI) over which both
patterned and unpatterned states are stable. Figure 1 is a
typical example, showing a band (shaded) within which a
doubly-infinite sequence of LS snakes upwards [4]. The
theory of this homoclinic snaking is powerful and rather
general [3–9]. Though it is strictly applicable only to one
spatial dimension (1D), 2D systems seem to behave in a
similar manner [3,10].

An obvious explanation for the discrepancy between
theory and experiment is that the MI threshold varies
across the system in such a way that patterns can form
only at local ‘‘sweet spots.’’ However, an incipient pattern
should not usually be confined to just those areas where the
MI threshold is locally exceeded. It should invade the
surrounding region, stopping only at the ‘‘locking point,’’
where the front between it and the unpatterned state is
stationary (in Fig. 1, the right-hand edge of the shaded
region). For this expansion to halt when only a single spot
has formed, as in Figs. 2(a) and 2(b), would imply im-
probably large experimental inhomogeneities. Further, if
spatial variations were indeed so strong, it becomes hard to
explain the emergence at different points in Fig. 2 of near-

identical spots. Here, we suggest instead that the observed
structures are indeed the LS predicted by theory, but arising
beyond the MI threshold because, in addition to the short-
range (quasilocal) nonlinearity responsible for pattern for-
mation and the usual homoclinic snaking, the nonlinearity
of the system has an inhibitory long-range (quasiglobal)
component. This could well be due to some physical
mechanism neglected in the basic theory. We discuss pos-
sible mechanisms towards the end of the Letter, but our
emphasis here is on generality of effect, rather than specific
models or mechanisms. If the nonlocal effect increases
with the norm of the spatial structure, there would be no
effect on the MI threshold, but the development of a pattern
would be suppressed over some effective range. We show
that such an additional nonlinearity can tilt the snakes,
allowing stable LS to exist above MI, coalescing to form

-0.020 -0.015 -0.010 -0.005 0.000
r

0.00

0.05

0.10

0.15

0.20

0.25

N

FIG. 1. Bifurcation diagram for the norm N of patterns and
localized states in the quadratic-cubic Swift-Hohenberg Eq. (1)
without global coupling: parameters v � 0:412, g � 1, qc �
0:5. Domain width L � 21� �2�=qc� ’ 263. Modulational in-
stability occurs at r � 0. A subcritical roll pattern is shown,
which exists and is stable down to a saddle-node at r ’ �0:017.
Also shown is a pair of localized-state snakes which align with
the range (shaded) over which the front between roll and trivial
solutions is locked. (After [4].)
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a pattern only if and when the local nonlinearity overcomes
the inhibition mechanism. In the long-range (global) limit
of nonlocality, we demonstrate an exact scaling law be-
tween local and local� global problems which provides
an explicit proof of snake-tilting in both 1D and 2D,
indicating that nonlocality may be a widely-applicable
mechanism for unexpected spontaneous appearance of
localized states in Turing-unstable systems. This suggests
that nonlocality may resolve the anomalous experimental
behavior illustrated in Fig. 2. We present detailed results
for the Swift-Hohenberg equation (SHE), a standard model
of pattern formation applicable to experimental systems in
a wide variety of fields [1]:
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Here, we have added the final term, which will describe
nonlocal coupling. The SHE’s flat state u � 0 shows MI at
r � 0 to a pattern with wave number qc. Our main results
apply exactly to all forms of SHE showing snaking, in-
cluding the quadratic-cubic [4] and cubic-quintic SHE
[3,7,8,11]. We have verified that similar effects arise in
specific physical models, including models relevant to
semiconductor lasers such as that of Fig. 2(a), but our
emphasis here is on general results for generic models
such as the SHE. Because Burke and Knobloch [4] give a
very clear and complete description of localized states for
the quadratic-cubic SHE where Gn�u� � vu2 � gu3, we
analyze this case specifically. Pattern formation is subcrit-
ical for v � 0:41 and g � 1, the case analyzed in detail in

[4]: the uppermost curve in Fig. 1 represents the stable
qc-patterned state. Figure 1 also shows two sequences of
LS with, respectively, even and odd numbers of peaks.
Within each sequence, the energy (or other norm) charac-
teristically ‘‘snakes’’ upwards, zigzagging to and fro across
the locking range, adding an extra pair of peaks on each
successive positive-slope ‘‘zig.’’ The connecting ‘‘zags’’
are always unstable. The LS high up each snake resemble a
partial roll pattern, and their wings asymptote to the sta-
tionary fronts which characterize the locking range [4]. In
this regime, the snaking can be quantified by delicate
beyond-all-orders asymptotic theory [7,8].

Our interest here, however, lies with the few-peak LS
forming the lower portions of the snakes, which we will
term LS1, LS2,. . . by the number of peaks. To observe such
LS, it should be necessary to place the control parameter
within the snaking range and apply a local excitation in the
form of an address pulse, causing the system to evolve onto
the desired ‘‘zig’’ of the snake. Successful addressing has
been observed in experiment, e.g., in a magnetic fluid [12]
and in optical experiments, e.g., [13]. Figure 2(a) and 2(b)
demonstrates a different behavior, however, in which sev-
eral LS1 appear in succession, without addressing, on
parameter variation. Here, snaking is either absent, or the
snakes are somehow ‘‘tilted’’ so as to overhang the MI
threshold. Figure 2(b) explicitly shows a tilted-snake bi-
furcation sequence in a gas-discharge experiment [14].
Bright LS1 filaments are added and subtracted essentially
sequentially as the applied voltage is varied.

With a view to inducing such a tilt, we now include a
finite nonlocal term in (1), setting Cnl � �N2

K, where

 N2
K�x� �

1

L

Z L

0
dx0K�x0; x�u2�x0�: (2)

We assume the kernel K�x0; x� is symmetric in its argu-
ments. Note that if K � 1, the new term is global, and NK
just equals N, the rms norm of u over the system domain
[4] plotted in Fig. 1. Conversely, ifK is a delta function, the
new term becomes local, a cubic contribution ��u3=L to
Gn�u� in (1).

We first consider a large but finite spatial domain of size
L, on which we assume K � 1 a good approximation. For
� > 0, the nonlocal term acts like a reduction in the drive
parameter r. Indeed, for stationary states, there is an ob-
vious but important scaling law: every stationary state
u�x; r; �� for global coupling is an exact stationary state
of the local Swift-Hohenberg equation for a rescaled drive
parameter r. In fact, u�x; r; �� � u�x; r� �N2; 0�. The
converse is also true, so all stationary states of the
globally-coupled Swift-Hohenberg equation (for any �)
can be found exactly, given all stationary states of the local
problem. This scaling has a simple and instructive graph-
ical implementation in (N, r) state diagrams such as Fig. 1.
The states u�x; r� �N2; 0� are associated with the inter-
sections of the parabola r0 � r� �N2 with the state
curves, including the pattern curve and the snakes. In

FIG. 2. (a) Sequential appearance of localized states in an
optically-pumped semiconductor laser amplifier as the pumping
rate is increased, leading eventually to a patternlike state [20].
(b) Diagram of current against applied potential in a gas-
discharge system showing a bifurcation sequence of current
filaments (courtesy of H-G Purwins [14]).
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particular, the snakes’ asymptotes (i.e., the locking range)
shift to progressively higher values of r as � is increased,
tilting the snakes.

Figure 3 shows examples of global-coupling state dia-
grams generated by this procedure. In Fig. 3(a), for global-
coupling strength � � 2, the locking range lies above the
MI threshold r � 0, where there are now stable LS but no
stable pattern. In Fig. 3(b), � � 10 is big enough that the
pattern is supercritical at r � 0, but LS1 and LS2 exist
subcritically and are stable. The stability assignments in
Fig. 3 are derived using a Newton-Fourier method previ-
ously applied to similar problems [10,15]. From a good
initial guess (here given by the scaling law), this yields
both the stationary states and their spectra. The stability
problems for the ‘‘global’’ state u�x; r; �� and its ‘‘source’’
state u�x; r� �N2; 0� are different. The source states are
stable on the whole of each zig of the snakes, unstable to an
even mode on the whole of each ‘‘zag,’’ and to an odd mode
on most of each zag [4]. Exact results for the even modes of
the global states are lacking, but we find that stable zigs
map into stable zigs, consistent with the fact that the
lowest-order perturbation to even-mode eigenvalues is sta-
bilizing. However, it is easy to show that global and source
states have identical odd modes, with identical eigenval-
ues. Since source zags map wholly or partly into global
zigs, the latter can thus exhibit a novel odd-mode insta-
bility. This occurs on the LS2 branch in Fig. 3(b).

Global coupling leads to tilted snakes, as in Fig. 3, and
thus to the sequential appearance of LS as the drive pa-
rameter is increased. Figure 2, however, seems to show
sequential appearance of separate LS1, rather than a se-
quence LS1, LS2, LS3,. . . of close-packed clusters. This
behavior can be captured by considering nonlocal, rather
than global, coupling. The appearance of LS1 at the MI
threshold persists for a kernel of range larger than the LS1
size. Figure 4 shows this for a kernel �e�jx�x

0j=�, appro-
priate for a diffusive-type nonlocality [16]. Also shown in
Fig. 4 is the effective r, i.e. [r� �N2

K�x�], in the region

surrounding the LS1. This lies below the MI threshold and
thus inhibits formation of LS or patterns around the LS1.
Note that the effective r at the center of Fig. 4 is close to the
locking range of r in Fig. 1. This, together with the fact that
the ‘‘kernel’’ LS1 in Fig. 4 is very similar to that predicted
by global scaling, indicates that the global model is an
excellent approximation to finite-range nonlocal models
and thus a good basis for perturbation theory.

As well as inhibiting MI, a long-range kernel induces a
long-range interaction between LS. Some insight into this
can be derived from free-energy considerations. The local
version of (1) has an associated free energy [4], which we
write as F�u; r; � � 0�. Adding a nonlocal term with sym-
metric kernel, F becomes F�u; r; �;K� � F�u; r; 0� � Fnl,
where

 Fnl �
�

4L

Z L

0

Z L

0
dxdx0K�x0; x�u2�x0�u2�x�:

Using the properties of F�u; r; 0� and the symmetry of K, it
is easy to show that F�u; r; �;K� cannot increase during the
dynamical evolution of u. It follows that all stable states of
(1) are stationary, and local minima of F�u; r; �;K�.

Suppose now that the LS1 state is given by a function
s�x�, which is well-localized on the scale � of K. Then the
free energy for two LS1 at locations x1, x2, separated by a
distance of order � or more, should take the form

 F�u � s�x1� � s�x2�; r; �;K�

� 2F�s; r; �;K� � fintK�x1; x2� (3)

where we have assumed that u is well represented by the
sum of two LS1 states and that s�x�may be regarded as a �
function on the scale of K. Since K decreases with sepa-
ration, so does the two-LS free energy, and hence there is a
repulsive force acting between well-separated LS.

Combining the effective r and kernel-force concepts,
and noting that both extend directly to 2D, we can envisage
the following scenario beyond the MI threshold. For r > 0,
an LS will suppress other LS throughout the zone within
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FIG. 4. LS1 (solid line) for a nonlocal exponential kernel in the
quadratic-cubic Swift-Hohenberg Eq. (1), and corresponding
effective r (dashed line). Parameters are r � 0:001, � � 12:5,
and � � 100 ’ 8� �2�=qc�.
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FIG. 3. Bifurcation diagram for the norm N of patterns and
localized states in the quadratic-cubic Swift-Hohenberg Eq. (1)
with global coupling. (a) � � 2: The pattern range is reduced
compared to � � 0 (Fig. 1), and the snakes are tilted.
(b) � � 10:0: The pattern is now supercritical and stable only
for r > 0:14, but both LS1 and LS2 states exist (see inset) and
are stable at r � 0.
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which the effective r is negative (cf. Figure 4). Outside that
zone, other LS can form and survive, but the kernel-
induced repulsion will cause them to move apart until
balanced by other forces (parameter gradients, other LS,
etc.). In both 1D and 2D, this should result in the appear-
ance of sparse populations of isolated LS with separations
comparable to the kernel range. Assuming that the kernel is
sharp enough at small distances to disrupt an LSn state into
n LS1 states, this scenario describes Fig. 2 rather well. The
kernel for a diffusive nonlocality in 2D (a Bessel function
of the second kind) is singular at the origin, causing
instability of higher-order nonlocal Kerr solitons [16], so
disruption of dissipative LSn by nonlocality seems
plausible.

Having begun the treatment of 2D systems, it is now
appropriate to discuss the further applicability and exten-
sibility of the above results to 2D, and also to more system-
specific models. First, we recall that the Pomeau locking
mechanism [9] is not limited to 1D, and thus the 2D snakes
must also be tilted if LS are to appear spontaneously. The
exact scaling between local and global problems remains
exact and effective in inducing tilting in the 2D SHE.
Furthermore, similar exact scaling applies to more physical
models, and, in particular, to models of optical systems
such as [10,17–19] relevant to Fig. 2(a) [20]. These models
have at least two dynamical variables, but it is not neces-
sary for the global effect to couple to all of them for scaling
and tilting to apply. We have preliminary evidence for
tilting in a cavity containing a saturable absorber [21], in
which the global coupling is to the cavity tuning �.

The choice of � for nonlocal coupling is natural on
physical grounds: thermal effects couple directly to � since
it is jointly determined by refractive index and cavity
length. The temperature depends on the state of excitation
of the cavity through a diffusion equation, with a spatial
scale typically large compared to the LS1 size, determined
by diffraction. Thermal effects thus lead naturally to the
addition of a quasiglobal term to �. Other physical mecha-
nisms which may be responsible for nonlocality in relevant
optical experiments include photocarrier diffusion and mo-
lecular orientation.

More generally, in pattern-forming systems, boundary-
induced constraints typically have a quasiglobal character.
Thus, the supply of energy across the system could become
nonuniform through intrasystem competition in the pres-
ence of localized states. This might lead, perhaps indi-
rectly, to mutual inhibition of LS. There may also be
intrasystem competition for other resources, such as those
limited by a conservation law, e.g., of material. We recently
learned of independent work [22] which finds ‘‘slanted’’
snaking in the presence of such conservation laws.

In this Letter, we have identified a qualitative discrep-
ancy between the theory of homoclinic snaking and related
experimental observations, in that localized states com-
monly appear spontaneously in experiment whereas in
theory they should only be accessible through hard exci-

tation. We have suggested that a competing quasiglobal
nonlinearity could be responsible for this discrepancy and
have given preliminary evidence in favor of our conjecture.
While nonlocal nonlinearity is of great current interest in
its own right [16], there has been very little work on
competition between local and nonlocal nonlinearities.
This competition is fundamental to the present Letter
because it enables a separation between the spatial scales
of the LS (determined by the critical wave vector) and their
interaction (determined by the nonlocal coupling). It also
permits an exact scaling for global coupling, which forms a
robust basis for perturbation theory for finite-range cou-
plings. We have proven and/or demonstrated key results on
tilted snaking for the Swift-Hohenberg equation, but our
approach and methods are much more widely valid and
readily applicable to the sorts of experimental system in
which the anomalous spontaneous appearance of localized
states is observed.
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