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Motivated by its importance for microfluidic applications, we study the stability of jets formed by
pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the
classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and
Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes
the form of a jet and regimes where drops are produced. We describe this as the transition from convective
to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds
number, and reach remarkable agreement with the data.
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Since the seminal works of Plateau [1] and Rayleigh [2],
i.e., for more than a century, the breakup of a liquid jet
injected in an immiscible liquid has been extensively in-
vestigated because of its relevance for an immense field of
practical and industrial applications ranging from chemical
processes to ink jet printing, through spray atomization,
emulsification process, and polymer extrusion, to name a
few. A major result is that inviscid cylindrical jets in air are
unstable to disturbances of wavelength larger than the jet
circumference. The interplay of interfacial stresses and
inertial forces that rules jet breakup is rather complex
[3,4], and can be rationalized in terms of absolute and
convective instabilities as determined from a linear analy-
sis [5]. An absolute instability corresponds to disturbances
growing and propagating both downstream and upstream,
leading after a transient to drops released at or close to the
injection nozzle. Increasing velocity sufficiently can make
the instability convective with perturbations that propagate
downstream while they grow, allowing for a continuous
fluid thread to persist. Several experimental studies support
this picture [6,7].

In this Letter, we apply these concepts to analyze jet
stability in a somewhat different realm, namely, biphasic
flows in microfluidic channels. In this context, dripping
and coflow regimes have been not only observed, but also
exhaustively used for various applications [8–10]. Beyond
the importance of viscous forces (the Reynolds numbers
are typically small to moderate), the essential contrast with
most of the previous studies which focused on unbounded
flows [6,11–13] is the major role of the microchannel walls
which induce parabolic flow profiles and strongly affect the
development of perturbations.

In our experiments, we generate a jet in a cylindrical
glass capillary of inner radius Rc, using as a nozzle a glass
capillary of square cross-section with a tapered end (see
Fig. 1). The outer dimension of this square capillary is very
close to the inner diameter of the cylindrical tube which

ensures good alignment and centering [14]. Rc is in the
200–500 �m range, whereas the radius of the tapered
orifice of the square tube is set between 20 and 50 �m
using a pipette-puller set up. Syringe pumps are used to
inject an inner fluid of viscosity�i at a rateQi in the square
capillary and the outer fluid of viscosity �e at a rate Qe
through the cylindrical capillary. This leads to coaxial
injection at the tapered orifice.

We observe flow patterns which vary significantly with
operational (Qe, Qi), geometrical (Rc), and system pa-
rameters (�i, �e, surface tension �). Figure 2 displays
the typical outcome of an experiment where the flow rates
are varied for a given system (here the inner solution is a
50% in weight glycerine in water solution with �i �
55 mPa:s and the outer one a silicone oil for which �e �
235 mPa:s). A droplet regime is found for low Qi, with
either droplets emitted periodically right at the nozzle—
symbol (open circle)—or non spherical pluglike droplets
resulting from the instability of an emerging oscillating jet
(filled gray circle). Jets are found in the bottom right corner
of Fig. 2 with different visual aspects: wavy jets with
features that are convected downstream (open square),
and for larger values of Qi, straight jets (filled square)
that persist throughout the cylindrical capillary. For large
values of the external flow rate Qe, we observe what we
call jetting: thin and rather straight jets (open diamond)
that extend over some distance in the capillary tube before

FIG. 1. Flow geometry and notations used in the text.
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breaking into droplets at a well-defined and reproducible
location. This ‘‘jet length’’ increases with Qi for a fixed
value of Qe [15]. Similar ‘‘dynamic phase diagrams’’ have
been reported for more complex microfluidic geometries
[16–20].

We now attempt to model these phenomena analytically,
taking advantage of the simplicity and symmetry of the
present cylindrical geometry. The problem remains how-
ever quite complex, even at the level of a linear stability
analysis, so we proceed with approximations [21]. We
neglect inertial effects (i.e., as the Reynolds number is
small in most of our experiments), and we use lubrication
theory (i.e., we formally assume that the wavelengths of
the perturbations are long compared to the capillary radius)
which has been shown to be remarkably insightful in
somewhat related situations [22]. The unperturbed refer-
ence state (Fig. 1) is easily described using Stokes equa-
tion. The pressure gradients in the two fluids are for this
unidirectional flow constant and equal @zPe � @zPi �
@zP0, with the Laplace law relating the local pressures:
P0
i � P

0
e �

�
r0
i

where r0
i the radius of the inner jet (Fig. 1).

We perform a linear stability analysis of this solution,
considering only small z-dependent cylindrically symmet-
ric perturbations �ri�z; t�. Within the lubrication approxi-
mation (i.e., assuming that the interface is flat and that the
flow is uunidirectional), this leads to a description in
terms of the resulting perturbations �Qe�z; t�, �Qi�z; t�,
@z�Pe�z; t�, @z�Pi�z; t�, which are locally related by rela-
tions similar to those describing the unperturbed flow. In
particular, we still enforce no slip boundary condition at
the solid liquid interface as well as continuity of the
velocity and of tangential stress at the interface between

the two fluids. The important difference is that, as the
radius of the jet varies, so does, through the Laplace law,
the difference between the two pressure gradients:

 @z��Pi � �Pe� � �� @z

�
�ri
r02
i

� @2
z�ri

�
(1)

with @2
z�ri and �ri

r02
i

the jet curvatures along and perpendicu-

lar to the flow. Mass conservation of the incompressible
fluids provides the closure of the system of equa-
tions: �Qe�z; t� � �Qi�z; t� � 0 and @t��r

0
i � �ri�

2 �
�@z���Qe�z; t��.

Considering perturbations proportional to e�ikz�!t�, with
k � kr � iki and ! � !r � i!i complex numbers, we
obtain the dispersion equation:

 ~! �
�i Ka x3E�x; ��~k� F�x; ���~k2 � ~k4�

x9�1� ��1� � x5
(2)

where we use the notations ~k � r0
i k, ~! � !16�eRc

� ,
 

E�x; �� � �4x� �8� 4��1�x3 � 4���1 � 1�x5;

F�x; �� � x4�4� ��1 � 4 ln�x�� � x6��8� 4��1�

� x8�4� 3��1 � �4� 4��1� ln�x��;

and where we identify the three essential adimensional
parameters that rule the behavior of the system: the
viscosity ratio � � �i

�e
, the degree of confinement of

the unperturbed jet x �
r0
i
Rc
�

����������������
��1

��1���1

q
with � ������������������������

1� ��1 Qi
Qe

q
, and a capillary number Ka � �@zP0R2

c

� . Note

that Ka is a capillary number defined at the scale Rc and not
at the jet scale r0

i as in most studies of unbounded flows.
The jet would be linearly stable if all !r were negative,

which is not the case. With some !r positive, an initially
localized perturbation generates a growing distortion that
spreads in a domain bounded by two fronts moving at
velocities v�� and v��, selected because they correspond
to maximal growth rate !r and extremal velocity of the
envelope of the perturbation v � !r

ki
. These criteria read

v� � !�r
k�i

, @!
�
r

@kr
� 0 and v� � @!�r

@ki
[5,22], which selects, in a

dimensional form ~v� � ~!�r=~k�i ,

 ~v �	 �
Ka x3E�x; �� 	 C1F�x; ��

x9�1� ��1� � x5
(3)

where C1 �
5�

��
7
p

18

���������
24��
7
p
�1

q
.

As v�� is always positive, the nature of the instability is
set by the sign of v��: if negative, growing perturbations
also travel backwards and the jet is absolutely unstable,
while for v�� > 0, the instability is convective as all
perturbations are convected downstream. We reach a
rather simple analytical prediction for the transition:
~v���Ka; x; �� � 0, plotted on Fig. 3 in the (x, Ka) plane
describing operational conditions, for various values of the
system dependent viscosity ratio � � �i=�e.

FIG. 2. Map of the flow behavior in the (Qi, Qe) plane. The
droplet regime comprises droplets smaller than the capillary
(open circle) and pluglike droplets confined by this capillary
(filled circle). Jets are observed in various forms: jets with visible
peristaltic modulations convected downstream (open square),
wide straight jets (filled square) that are stable throughout the

5 cm long channel, and thin jets breaking into droplets at a
well-defined location (open diamond). Parameters are Rc �
275 �m, inner viscosity �i � 55 mPa:s, outer viscosity �e �
235 mPa:s, surface tension � � 24 mN=m.
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We suggest that this plot describes the dynamic behavior
of our system, with the transition separating dripping
(absolute instability) from jets (convective instability).
Indeed, in the convective case, growing disturbances are
simultaneously convected downstream and a continuous
jet can persist in the system over some distance (which
does not preclude the formation of droplets downstream).
This encompasses the three types of jets observed in Fig. 2.
By contrast, in the absolute instability regime, no jet is
stable, as any perturbation generates oscillations that grow
and travel backwards to invade the whole capillary. This
corresponds to the droplets and plugs regimes displayed on
Fig. 2.

What are the main features predicted by this model?
Comparing systems, decreasing � � �i=�e increases the
‘‘droplet’’ regime at the expense of the ‘‘jet’’ regime. For a
given system (a given �), one moves from droplets to jets,
either by increasing the capillary number Ka (i.e., the
normalized pressure drop) or the degree of confinement
x � r0

i =Rc. This is physically sound, as increasing Ka
corresponds to convecting away the perturbations faster,
while increasing the confinement x results in slowing down
the rate of development of the perturbations due to the
proximity of the walls.

In order to provide a directly useful guide, we turn to a
representation in the operational plane Qi,Qe, in the Fig. 4
using characteristic values of our experiments. Noticeably,
these plots predict a ‘‘reentrant’’ behavior jet ! drops!
jet upon increase of the external flow rate Qe with all other
parameters fixed. This relies on the physics mentioned
above. At low Qe, increasing Qe mostly reduces the strong
confinement of the jet, allowing the instability to develop
faster and thus promoting the formation of droplets. At
high Qe, confinement is not significant, and raising Qe

primarily increases the jet velocity and the downstream
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FIG. 4. Dynamic behavior in the (Qi, Qe) plane from our
simple model. Above the line, the jet is convectively unstable,
whereas below the lines it is absolutely unstable and droplets are
expected. We vary independently each parameter around the
conditions of Fig. 2 chosen as reference: � � 24 mN=m, Rc �
275 �m, �e � 235 mPa:s and �i � 55 mPa:s. (a) From top to
bottom, �e � 23:5, 235 and 2350 mPa:s. (b) From top to bot-
tom, � � 50, 24 and 5 mN=m. (c) From top to bottom, Rc �
350, 275 and 175 �m. (d) From top to bottom, �i � 5:5, 55 and
550 mPa:s. The gray shading indicates where the average
Reynolds number is larger than unity [24].
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FIG. 3. Dynamic behavior diagram in the (x, Ka) plane. The
lines are the predictions ~v���Ka; x; �� � 0 for the absolute-
convective transition, for viscosity ratios � equal to 10, 1, 0.1,
0.01, and 0.001 (bottom to top). Above the lines, the jet is
convectively unstable, whereas below the lines, the jet is abso-
lutely unstable. Regions below the lines correspond to droplets
region.
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FIG. 5. Experimental data (symbols) and theoretical predic-
tions (continuous line) displaying the effect on the dynamical
behavior of an increase of the capillary radius Rc [�a1� ! �a2�]
and a decrease of the surface tension � [�b1� ! �b2�]. Gray
symbols (open gray circle and filled gray circle) correspond to
droplets and the black ones (open square, filled square, and open
diamond) to jets (see Fig. 2). For (a1) and (a2), � � 24 mN=m,
�e � 0:235 Pa:s and �i � 0:055 Pa:s, with Rc � 275 �m for
(a1) and Rc � 435 �m for (a2). For (b1) and (b2), Rc �
275 �m, �e � 3 mPa:s and �i � 1 mPa:s, with � �
12 mN=m in (b1), and a decreased value using surfactants � �
0:12 mN=m in (b2). The lines are obtained without adjustable
parameters.
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convection of any developing perturbation, which favors a
continuous jet. These plots also clarify the influence of the
various parameters. For given flow rates, droplet formation
is promoted by large surface tension, wide capillaries, and
large internal viscosity, while the influence of the external
viscosity depends on the flow rates considered [see
Fig. 4(a)].

We now quantitatively compare our predictions to ex-
perimental data obtained for three surface tensions, two
viscosity ratios, and two capillary radii Rc (Fig. 5). Clearly,
given the approximations involved, our simple model de-
scribes very well the experimental data with no adjustable
parameters, and appears as a powerful predictive tool. A
certain level of disagreement is expected for weak confine-
ment (small Qi large Qe) as the lubrication approximation
is formally invalid in this case. Our model indeed over-
estimates Ka at the transition for vanishing x, as demon-
strated by comparison to the exact result of Gañán-Calvo
[23] for unbounded creeping flows. Inertial effects may
also slightly alter the picture for the largest outer flow rates
(see the shaded areas in Fig. 4). We also report in Fig. 6 all
the experimental data obtained for a given viscosity ratio �,
but for various surface tensions, various capillary radii, and
various flow rates. This shows the relevance of our descrip-
tion in terms of the adimensional variables Ka and x. An
additional interest of this mapping onto the (Ka, x) plane
of this large set of data is that it collapses relatively well the
different types of flows observed within the droplets and
jets regimes as can be seen by the grouping of the symbols.
In short, droplets correspond to small capillary number Ka
and small confinement ratio x, while plugs require larger
values of x. At higher values of Ka, increasing the con-
finement ratio x shifts the behavior from ‘‘jetting’’ (with
emission of droplets at a large finite distance from the
nozzle) to stable jets.

In conclusion, we have studied a variant of the Rayleigh
Plateau problem, i.e., the stability of pressure-driven con-
centric jets in a cylindrical confining geometry at low
Reynolds numbers. We have demonstrated that the nature
of the instability at the linear level (absolute or convective)
controls whether drops or a jet are obtained in this situ-

ation. We have identified the relevant adimensional quan-
tities that control the dynamic behavior and obtained
analytical predictions for the locus of the transition as a
function of all the involved physical and operational pa-
rameters. Both agree quantitatively with our experiments,
yielding a predictive synthetic map of the dynamic behav-
ior and of the resulting flow patterns. Returning to micro-
fluidic applications, we expect this mapping to be robust
and relevant for more commonly used microchannels,
which have cross-sections of lower symmetry (square,
rectangular, . . .). The corresponding experimental and
theoretical investigation is under way.
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