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We study the scattering of shock waves by a rough wedge using second-order perturbation analysis and
stochastic simulations employed synergistically to cover a large range in correlation length A and
amplitude � of the profile roughness (with length d). For small � and A=d� 1, the mean of the perturbed
pressure scales / �2 and / �A=d��2, while the corresponding variance scales / � and / �A=d��1.
However, for large �, the mean pressure scales approximately / �, while for A=d > 1 it is independent
of A. Our results are useful in evaluating the effects of roughness in high-speed flight but also in designing
novel enhanced-lift aerodynamic surfaces using rough skin concepts.
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The reflection of a shock by a wedge is a fundamental
problem in high-speed aerodynamics and has been studied
extensively [1–4]. Assuming a smooth wedge surface and
inviscid dynamics, the shock path and pressure distribution
can be obtained by simple analytical formulas [5]. How-
ever, considering the wedge surface to be rough leads to
complex shock dynamics that involves the interaction of
multiple shocks and Mach waves. M. J. Lighthill [6] and
B.-T. Chu [7] were among the first to consider this situation
and used first-order perturbation analysis to study weak
interactions, whereby the shock wave is only slightly per-
turbed from its base configuration. The first-order theory is
adequate only for very small roughness height and does not
provide a measure of the mean extra forces induced by
roughness since for zero mean height the first-order theory
predicts zero mean forces. Progress can be made by con-
sidering high-order perturbation theory in conjunction with
stochastic numerical simulations in order to study the
effect of large and fine random roughness on shock dy-
namics. An intriguing experimental finding published in
the Russian literature [8] suggests that roughness enhances
lift in airfoils; this was later confirmed by other experi-
mental studies in the USA [9], but the highest speeds tested
were below the supersonic regime.

In this Letter, we revisit the classical aerodynamical
problem of supersonic flow past a wedge but we consider
random surface roughness on the wedge. We employ a new
model for representing the random surface roughness as a
stochastic process, and present results for the forces on the
wedge based on second-order stochastic perturbation
analysis for small roughness and on stochastic numerical
simulations for small and large roughness.

We consider a small strip of roughness with zero mean
and length d around the wedge, as shown in Fig. 1, while
the rest of the wedge is smooth. Because of the finite length
of the roughness and the effects of boundaries, standard
covariance kernels for roughness cannot be used to model
this configuration. To this end, we obtain the nondimen-
sional random roughness of correlation length A as a
stochastic process hm�x;�� from the solution of the follow-

ing fourth-order differential equation with stochastic right-
hand side [10], of the form

 

d4hm
dx4

� k4hm � f�x�; (1)

where x is along the wedge and is normalized by the
roughness length d, k � d

A , and the random forcing term
f�x� is white noise satisfying:E�f�x1�f�x2�� � ��x1 � x2�,
where E�	� denotes the expectation. The solution is

 hm�x;�� �
X1
n�1

1

��4
n � k4�

 n�x��n�!�; (2)

where  n�x� � cos�nx� cosh�nx�
cos�n�cosh�n
sin�n�sinh�n




�sin�nx� sinh�nx�, �n is obtained by solving
cos�n cosh�n � 1, and f�n�!�g (! is a random event) is
a set of uncorrelated random variables with zero mean and
unit variance. We have investigated different probability
density functions, but here in the numerical results we use
uniform random variables �n 2 ��

���
3
p
;
���
3
p
�. We also define

the nondimensional roughness height (distance from the
smooth surface) as

 y�x;!� � �h�x;!� � �
hm
�
; (3)

where y is normalized by the roughness length d. Also,
� � maxx���hm��, � � maxx���y��, while � represents
the standard deviation.

In order to investigate the effect of roughness granular-
ity, we study three different nondimensional correlation
lengths A=d � 1, A=d � 0:1, and A=d � 0:01. These val-
ues determine the number of random dimensions, N, that
are required for accurate representation of the random
roughness in the expansion of  of Eq. (2). Here, we obtain
N by assuming that the truncated spectrum covers 90% of
the entire spectrum. We arrived at this criterion after con-
siderable testing. If the number of random dimensions is
not sufficient, oscillations are observed for both the mean
and the variance. For the results we present in this Letter
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we have found thatN � 2 is required for A=d � 1,N � 12
for A=d � 0:1 and N � 60 for A=d � 0:01.

In order to apply stochastic perturbation analysis, we
assume that: (i) The random wedge roughness is small, and
correspondingly the perturbation of the shock slope is
small. (ii) The oblique shock is attached to the wedge.
(iii) The flow between the shock and the wedge is adia-
batic. The domain of solution is between the perturbed
shock and the wedge surface, and we employ the Rankine-
Hugoniot conditions to obtain the flow state after the shock
[5]. In first-order perturbation theory, the shock and wedge
boundary conditions are imposed at the unperturbed shock
location and at the smooth wedge surface. However, in the
second-order theory, these conditions are imposed at the
perturbed surfaces in an iterative manner in order to ac-
count for the correct perturbed shock location [11].

Clearly, the perturbed lift has a mean value / �2 whereas
the corresponding standard deviation scales / �. The first-
order theory predicts zero mean of perturbed lift since the
assumed roughness has zero mean. In [11] (see also online
material) we derive detailed scaling laws for these quanti-
ties as well as the statistics of the shock path. We summa-
rize here the results for the perturbed wall pressure
distribution, �pw, for the two extreme cases of correlation
length A:
 

A=d� 1: E��pw� / �2E

��
@h
@x

�
2
�
/ �2�A=d��2;

���pw� / ��
�
@h
@x

�
/ ��A=d��1;

A=d� 1: E��pw� / �2 and ���pw� / �;

where E and � denote mean value and standard deviation,
respectively. These results show a strong dependence of the
perturbed wall pressure on the granularity of the roughness

for small correlation length but no dependence at all for
large correlation length. The perturbed lift force on the
wedge follows similar scaling laws for the mean, but the
standard deviation is different. For example, in the small
correlation limit the variance of the perturbed lift is inde-
pendent of A=d.

Next, we present results based on perturbation analysis
and on stochastic numerical simulations. We consider the
following conditions: The semi-infinite wedge, see Fig. 1,
is truncated after x � 6 while the rough region is x 2 �0; 1�
(x is normalized by the roughness length d); the angle of
the unperturbed shock is �0 � 45� (M1 � 2); �0 �
20:5755� and the angle of the wedge is �0 � 14:7436�.
We consider two values of the inflow Mach number, i.e.,
M1 � 2 and M1 � 8. All the physical quantities can be
obtained from the Rankine-Hugoniot relations; hence, the
outflow boundary conditions can be set up accurately. In
the simulations, we employ a fifth-order weighted essen-
tially nonoscillatory scheme [12] for spatial discretization
with 1000
 1000 grid points in the domain �0; 6� 
 �0; 4�.
The stochastic simulations are based on a probabilistic
collocation method and multidimensional integration using
sparse grids to deal with many dimensions (up to 12); see
[11,13].

Typical pressure contours corresponding to one realiza-
tion for M1 � 2 and M1 � 8 are presented in Fig. 1. A
reflection of Mach waves at the wedge surface is observed
in both cases, with the reflection point for M1 � 8 being
closer to the wedge apex than for the M1 � 2 case. In
particular, the reflection splits the wedge [0,6] into three
regions, namely: roughness region, first reflection region,
and second reflection region, as marked in Fig. 1; these
boundaries are predicted by the theory for small � [11]. In
the rough region, the pressure contours are all distributed
from high (at the apex) to low (at the end of roughness) for
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FIG. 1 (color). Flow structure (flow is from left to right): Pressure contours (one realization) for (a) M1 � 2 and (b) M1 � 8 (the
pressure contours for M1 � 8 are stretched 4 times perpendicular to the wedge surface for visualization purposes). (� � 0:01 and
A=d � 0:1).
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both cases. However, in the first reflection region, the
pressure contours are distributed in the opposite ordering
for M1 � 2 and M1 � 8; i.e., for M1 � 2 the pressure is
from high to low whereas for M1 � 8 the pressure is from
low to high.

Next, we present results for the mean of the perturbed
normalized lift force forM1 � 2 andM1 � 8, respectively,
in Figs. 2(a) and 2(b) as a function of the distance from the
wedge apex, for roughness amplitude � � 0:003 and � �
0:1, and correlation length A

d � 0:1 and A
d � 1. For rough-

ness amplitude � � 0:003, the numerical results based on
the full solution of the stochastic nonlinear Euler equations
agree well with the second-order stochastic perturbation
solutions (denoted as ‘‘Analytical Soln’’ in the plot), thus
verifying the �2 dependence. However, for roughness am-
plitude � � 0:1, the numerical solution deviates signifi-
cantly from the theory, leading to a scaling / �c with
1< c< 2. There seems to be a qualitative flow change
for large roughness height as well, with the perturbed lift
force being almost constant beyond the roughness region.
This can be explained by the significant distortion of the
characteristic lines that lead to a large variation of the
location of the reflection point on the wedge for different
realizations. This, in turn, will result in an averaging out
effect in the mean solution with no discernible reflection
region anymore. The enhanced-lift force generated due to
roughness can be significant and of the same order of
magnitude as the lift of the base flow (smooth wedge).
Moreover, within the rough region strictly positive mean
lift forces are observed for both M1 � 2 and M1 � 8 cases
and are increasing significantly both with respect to Mach
number and also with d=A; the latter implies that a large lift
force can be obtained for fine granularity roughness. For
large roughness (large �) the perturbed lift increases almost
monotonically with the distance to the apex but large
variations occur, especially for M1 � 8, beyond the rough-
ness region for small �.

Finally, we summarize the analytical and numerical
results in the plot of Fig. 3, where we present the perturbed
nondimensional mean lift, �L�1�, integrated from the apex
to the end of the roughness, x 2 �0; 1�, as a function of A=d
and � at inflow Mach number M1 � 8. The curvilinear
surface in Fig. 3 represents the region of validity of the
stochastic perturbation analysis. We see that the validity
region for A

d � 0:01 is much smaller than the validity
region for A

d � 1, but there is no difference between the
validity region for A

d � 1 and A
d � 10. On the curvilinear

surface, for fixed A
d , E��L�1��

�2 is independent of �, which
means that for small roughness amplitude the mean of
the perturbed mean lift scales / �2. We also observe the
scaling / �A=d��2 in the small A=d region (slope of �2 in
the plot). For large � (lines with cubic symbols in the plot),
the numerical results deviate from the �2 scaling, as also
shown in Fig. 2.

We have so far established that the mean lift increases
with the Mach number and more importantly by refining
the roughness. However, the corresponding perturbed
mean drag force increases similarly, so, from the practical
standpoint, optimization studies should be performed to
select the proper roughness that maximizes the lift-to-drag
ratio. For small �, perturbation analysis can be used to
formulate this stochastic inverse problem in terms of
h�x; ��. We have done this by postulating simple profiles
of the form �1� x�bx��0 
 x 
 1� and obtaining the range
of the deterministic parameter b that gives maximum lift-
to-drag ratio, also confirming that this ratio is larger than
the ratio of the smooth wedge. However, for more general
profiles of random roughness a numerical optimization
approach should be employed. It is also important for
such considerations to take into account the fluctuations
in the lift, quantified by the standard deviation ���L�.
The perturbation analysis reveals a scaling � E��L�

���L� /

��A=d��2, since ���L� is independent of A=d. On the
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FIG. 2. Enhanced-lift force: Distribution of the perturbed mean lift along the wedge surface (the wedge apex is at x � 0). (a)M1 � 2
and (b) M1 � 8. (The lift is normalized by P2d, where P2 is the pressure after the shock of the corresponding smooth wedge.)

PRL 99, 104501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 SEPTEMBER 2007

104501-3



other hand, numerical simulations for � � 0:01 show that
� E��L�

���L�> 1 for A=d � 0:1, and this ratio becomes much
larger for fine granularity roughness (A=d� 1).

We can readily extend our results to a full semi-infinite
wedge, where the upper surface is smooth whereas the
lower one has a strip of random roughness of the type
that we studied in this Letter. A net mean lift will be
obtained, while due to symmetry and inviscid assumptions,
there will be no net lift for a full semi-infinite wedge with
both smooth surfaces. Clearly, these ideas can be extended
to actual supersonic airfoils, where it will be beneficial to
mount on the under side of the airfoil a skin of fine random
roughness whereas the suction side should be either main-
tained smooth or rough but with much larger roughness
granularity.

Finally, we remind the reader that in this study we refer
to the wave lift and drag and did not take into account the

subtle structural changes near the wall due to viscous
stresses nor did we consider the real gas effect [3]. We
also note that our results are based on a stochastic analysis
that employs random variables of compact support. In this
case, the mean and standard deviation of pressure distribu-
tion do not depend on the particular probability density
function for small � (unlike the higher order moments) but
they do depend on it for larger roughness.
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FIG. 3 (color). Summary of analytical and numerical results.
Plot of the mean of the perturbed nondimensional lift as a
function of A=d and �. M1 � 8. The color surface corresponds
to the region of validity of perturbation theory. The lines with
cubic symbols correspond to stochastic simulations for large �.
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