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We propose a generic approach to nonresonant laser cooling of atoms and molecules in a bistable
optical cavity. The method exemplifies a photonic version of Sisyphus cooling, in which the matter-
dressed cavity extracts energy from the particles and discharges it to the external field as a result of sudden
transitions between two stable states.
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Resonant laser cooling is an extremely successful
method for creating the ultracold ensembles of atoms [1–
3]. It relies on the multiple absorption-emission cycles in a
closed system of levels and is limited to a small number of
atomic species. This makes laser cooling of molecules very
difficult [4], although there are a few proposals and experi-
mental demonstrations of cooling molecules [5]. More-
over, the effects of radiation trapping and excited state
collisions limit the final achievable phase-space density
in cooling methods based on resonant light absorption.

Nonresonant laser cooling methods such as cavity cool-
ing [6,7] and stochastic cooling [8–11] were shown to be
potentially useful for cooling dense samples of the trapped
particles down to the mK region. Cavity cooling is based
on the generation of viscous-type friction force imposed on
the atoms as they move inside a leaky cavity. Recently,
single atom-cavity cooling was experimentally demon-
strated [12,13], and further improvements by introducing
of a linear feedback were suggested [14]. The related
subject of radiation pressure cooling of microscopic me-
chanical resonators, such as micromirrors [15,16] and mi-
crolevers [17] has attracted significant attention recently.

We propose a generic scheme for nonresonant atomic
and molecular cooling in bistable optical cavities. The
cooling mechanism is of Sisyphus type [18], in which the
cavity mode (not the atom) performs sudden transitions
between two stable states. Conventional cavity cooling
relies on nonadiabatic effects in the cavity-atom interac-
tion, and requires high finesse cavities. In contrast, our
technique best operates in the opposite limit of ‘‘bad
cavity’’ and slowly moving particles, so that the cooling
rate does not experience deterioration at low atomic
velocities.

Consider an optical resonator supporting a standing
wave cos�2�x=�� exp��i!Rt� (where � is the spatial
period) and !R is the bare cavity resonance frequency.
The resonator is externally excited by an incident plane
wave Ei exp��i!�t� x=c�� � c:c:, which is nearly reso-
nant with the cavity mode �C � !R (where �C � !R �
!). A pointlike polarizable particle moving inside
the resonator contributes an effective refractive index
depending on the mode function at the particle’s instanta-
neous position. As a result, the cavity resonant frequency

experiences a position dependent shift, U�x� 	
U0cos2�2�x=��, where U0 	 !Re���=�"0V�, � is polar-
izability of the particle, V is the mode volume, and "0 is the
permittivity of free space (see, e.g., [19]). Thus, the intra-
cavity field becomes strongly coupled to the particle mo-
tion. The complementary aspect of this coupling is that the
dipole force felt by the particle depends on the local
intensity of the field inside the resonator. The combined
system dynamics is given by the following set of coupled
equations for the cavity field amplitude and the particle
motion
 

_E 	 2�Ei=
����
T
p
� E��� ��x� � i�C � iU�x��;

�x 	 �2�Re���jEj2=�m�� sin�4�x=��:
(1)

Here E exp��i!t� cos�2�x=�� � c:c: is the field in the
cavity. The decay rate of the cavity field is denoted by � 	
Tc=2L, where T is the transmission coefficient of the
cavity mirrors and L is the cavity length. In addition,
��x� 	 !Im���=�"0V�cos2�2�x� is the scattering rate of
the atom, and m is the mass of the particle.

In the adiabatic limit, when the particle’s velocity is
small enough (v� ��), the cavity field responds to the
motion and attains steady state for any position of the
particle. The steady-state intensity of the cavity field can
be extracted from the first equation of the system of
Eqs. (1):

 jEj2 	
4jEij2

Tf�1� ��x�=��2 � �2�x�=�2g
; (2)

where ��x� 	 �C �U�x� is the effective detuning of the
cavity which depends on the instantaneous position of the
particle. Substitution of Eq. (2) into the second of Eqs. (1)
reduces the problem to that of the motion of a particle in an
effective periodic potential. Because of the conservative
character of this motion, energy that is lost while climbing
a potential hill is regained while sliding down on the other
side. Therefore, no net energy loss is possible in the
adiabatic limit, and the cooling process requires nonadia-
batic effects. All previously discussed cavity cooling
schemes [6,7] rely on high finesse cavities that ensure a
retarded response of the internal field to the changing
position of the particle. There is, however, a notable ex-
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ample for a profound nonadiabatic effect in ‘‘bad’’ (low
finesse) cavities, which is related to the phenomenon of
optical bi- or multistability [20]. A driven nonlinear optical
resonator may have two coexisting stable steady states. A
sharp transition between these states may happen even at
infinitely slow variation of the resonator parameters, lead-
ing to a rapid passage from high to low cavity field (or vice
versa). In what follows, we demonstrate a novel scheme for
cooling using a bistable cavity.

We now consider the situation when the pump frequency
is far detuned from any atomic transition, so that the
scattering loss ��x� may be neglected, as verified in nu-
merical calculations (not shown), where scattering was
included at a level similar to that discussed previously
[6,7]. We introduce an external feedback circuit such that
the external pump field intensity Ii 	 jEij2 depends on the
field intensity I 	 jEj2 inside the cavity. In this case, the
expression (2) becomes an equation for the steady-state
intracavity intensity

 I �1��2�x�=�2� 	
4Ii�I�
T

: (3)

For a given dependence Ii�I�, the equation (3) may be
solved for I, e.g., graphically [see Fig. 1(a)] by considering
the intersection of a dashed line [left-hand side (LHS) in
Eq. (3)] and the feedback curve [right-hand side (RHS) in
Eq. (3)]. We assume the latter to have a sigmoid shape
[solid line in Fig. 1(a)]. The slope of the straight line
depends on the particle position and varies from 1�
��C �U0�

2=�2 to 1� �2
C=�

2 (and back) as the particle
moves. Depending on the parameter values, the feedback
curve and the straight line may have one or three inter-
sections [each corresponding to a solution of Eq. (3)]. In
the case of triple intersection, linear stability analysis
shows that only two of the solutions [shown by solid circles
in Fig. 1(a)] are stable [20].

Let us follow the motion of a high-field seeking (U0 >
0) particle over one period of the standing wave. We

consider the case of �C > 0 (pump frequency is lower
than !R), and relatively weak coupling, U0 < �C. When
the particle is at an antinode of the standing wave (e.g.,
x 	 0), the cavity detuning ��x� is minimal, and the am-
plitude of the internal field is high [see Fig. 1(b)]. As the
particle moves toward the node of the standing wave mode,
the slope of the straight line in Fig. 1(a) gradually increases
from 1� ��C �U0�

2=�2 to the maximal value of 1�
�2
C=�

2. When the particle is close to the antinode, the
steady-state solution follows the upper branch of the sig-
moid curve. At a certain particle position, the straight line
in Fig. 1(a) detaches from the sigmoid feedback curve, and
the intracavity intensity drops down to the solution at the
lower branch of this curve. After the particle reaches the
node, the slope starts decreasing back from its maximal
value 1� �2

C=�
2. The steady-state solution follows the

lower branch of the feedback curve until the multiple
intersections disappear, and the intracavity intensity jumps
to its high value. As follows from Fig. 1(a), the field
switches up and down at nonequivalent particle positions
(hysteresis effect that is well known for bistable resonators
[20]). Such a pair of sudden jumps occurs twice on every
period of the standing wave mode. When the particle
moves adiabatically over the standing wave, it gains kinetic
energy when sliding down the effective potential and loses
it when climbing up. The loss and gain, however, are not
equal due to the hysteresis effect. Depending on the rela-
tive sign between the particle polarizability (red or blue
detuning from the atomic resonance) and cavity detuning
�C � !R �!, the particle can (on average) either lose or
gain energy. For the parameters chosen above (�C > 0,
U0 > 0, andU0 < �C), the particle slows down. Moreover,
the particle loses the same amount of energy on passing
every single spatial period of the standing wave until it is
trapped by the optical potential. The average stopping
force acting on the particle is, therefore, constant and
does not depend on the velocity. It resembles a ‘‘dry
friction’’ force while in other cavity cooling schemes
[6,7,19] the resonator introduces viscous-type friction
which is proportional to the particle velocity. Hence, the
present scheme promises a more efficient slowing of the
particle.

To estimate this force, we consider a simple model in
which the sigmoid feedback curve is replaced by a steplike
function: jEij2 	 I1 for jEj2 < Isw and jEij2 	 I2 for
jEj2 
 Isw, where Isw is the cavity intensity value at which
the intensity of the incident field switches from I1 to I2.
The steady-state intracavity intensity is then double val-
ued: jEj2n�x� 	 4�2In=fT��2 ��2�x��g, (n 	 1, 2). Under
these conditions, the effective potential energy felt by the
particle has two branches as well

 

Wn�x� 	
Z x

dx0
"0V
!

dU�x0�
dx0

jEj2n�x
0�

	
4V"0In�
!T

arctan���x�=��; �n 	 1; 2�: (4)
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FIG. 1 (color online). (a) Solutions of Eq. (3) corresponding to
different particle positions. Stable solutions are shown by solid
circles, unstable one is shown by an open circle. Gray circles
(numbered 1 and 2) show the critical points at which the solution
jumps from one stable brunch to another. (b) Intensity of the
intracavity field versus particle position. The solid (blue) curve
shows the solution corresponding to the lower branch of the
feedback curve in (a), the dashed (red) curve corresponds to the
upper branch. Dotted lines show the intensity switching.
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For a slowly moving particle, the energy loss per half a
period of the mode function is given by

 �E 	 �
4V"0��I2 � I1�

!T

�
arctan

�
�2

�

�
� arctan

�
�1

�

��
;

(5)

where �1 and �2 are the critical detuning values at which
the straight lines touch the feedback curve: ��1;2=��2 	
�4I1;2 � TIsw�=�TIsw�. The average stopping force is given
by Fstop 	 2�E=�. For U0=�� 1, the particle motion
best modulates the cavity transmission at �C � �, i.e., at
the slope of the resonant Lorentzian curve, which also
holds for the regular cavity cooling [21]. By adjusting
the feedback curve such that the intracavity intensity
switches up when the particle is in the field antinode, and
the intensity goes down when the particle approaches the
node, the average stopping force in the limit of U0=�� 1,
and �C 	 �, is

 Fstop 	 �
4V"0�
�!T

�
U0

�

�
2
I0; (6)

where I0 	 �I1 � I2�=2 � I1 � I2 is the average input
intensity.

Figures 2(a) and 2(b) present two examples of the bi-
stable cavity cooling for weak (U0=� 	 0:1) and strong
(U0=� 	 1:33) atom-cavity coupling, respectively. Both
figures depict the simulated temporal evolution of the
velocity of a single particle moving in a bistable cavity
(lower curve) and compare it to cavity cooling without the
feedback (upper curve). In these simulations, the sigmoid
feedback step function was represented by a smooth con-
tinuous function:

 Ii 	 I0 � ��I=2� tanh�a�I � Isw�T=I0�;

I0 	 �I1 � I2�=2; �I 	 I2 � I1:
(7)

The parameter a controls the steepness of the feedback
curve step. Cavity cooling without feedback corresponds to
�I 	 0.

The dimensionless parameters for Fig. 2(a) were chosen
as U0=� 	 0:1, �I=I0 	 0:13, TIsw=I0 	 0:53, a 	 50,
and Re���I0=��2�2Tm� 	 2:5 10�5. The latter parame-

ter is actually proportional to the ratio of the polarization
energy and a typical kinetic energy of a particle moving
with the velocity v 	 ��. The chosen parameters corre-
spond to a particle having mass of Rb atom and pumped far
off-resonance (about 70 natural linewidth below the atomic
transition). The initial velocity of the particle is �2500
recoil velocities, vrec of the rubidium atom. The cavity is
500 �m long with the mode diameter of 15 �m and �C 	
� 	 1:2 108 s�1, pumped by 5 nW light of 1 �m wave-
length. At the initial stage, the nonadiabatic effects are
prevailing and the velocity of the particle decreases in a
way similar to the conventional cavity cooling [6,7,19]. As
the particle slows down, the bistability ‘‘kicks in’’, and the
velocity starts to decrease linearly with time [see Fig. 2(a)].
The numerical value of the decelerating force is in good
agreement with the analytical estimate, Eq. (6). The inset
in Fig. 2(a) shows the time dependence of the cavity field in
the domain of constant deceleration. Jumplike changes in
the field intensity are clearly seen as discussed above
[compare with Fig. 1(b)]. The deceleration stops as the
particle reaches the velocity of �250vrec and becomes
trapped by the optical potential. For comparison, the upper
curve in Fig. 2(a) demonstrates the same process in a cavity
without the feedback and is evidently less efficient under
the same conditions.

The parameters for Fig. 2(b) were chosen to resemble
qualitatively the conditions of the conventional cavity
cooling experiment [12], i.e., strong atom-cavity coupling,
exact cavity resonance (�C 	 0), and blue detuning from
atomic transition (negative polarizability). The following
set of parameters was used: U0=� 	 �1:33, �I=I0 	
0:95, TIsw=I0 	 0:53, a 	 10, and Re���I0=��2�2Tm� 	
�5 10�5. An efficient deceleration in the bistable re-
gime is seen, which is faster than that of Fig. 2(a) due to
stronger coupling.

The response time of the feedback loop determines
the upper limit of the initial velocity. In particular, a finite
measurement time, tm is needed to distinguish the particle-
induced variations in the cavity output [�I in the above
model, Eq. (7)] from the Poissonian shot noise in the mean
transmitted signal (proportional to I0). The required con-
dition is tm > �I0=�I�2@!=P0 (where P0 is mean incident
light power). The particle displacement during the mea-
surement has to be smaller than the period of the cavity
mode, vtm=�� 1. For the examples presented in
Figs. 2(a) and 2(b) this ratio is 0.1 and 0.02, respectively.
Assuming also that �1 ns is required for an electro-optic
circuit to switch between the two levels of the feedback
step; the particle velocity should be less than 50 m=s in
order for us to neglect its displacement relative to the
0:5 �m period of the optical potential.

Next, we analyze the cooling of an ensemble of N
particles coupled to a single mode of a bistable resonator,
under conditions of blue atomic detuning �C 	 0,U0=� 	
�0:7, and Re���I0=��

2�2Tm� 	 �2:5 10�6. The feed-
back curve was chosen in the form of a smoothen step [as
in Eq. (7)] with the parameters adjusted to ensure frequent

FIG. 2 (color online). Particle deceleration in a bistable cav-
ity—lower curve (red) in the (a) weak, and (b) strong atom-
cavity coupling regimes. For comparison, the upper curve (blue)
shows particle slowing in the absence of feedback (�I 	 0). The
insets show the time dependence of the cavity field intensity in
the domain of constant deceleration.

PRL 99, 103002 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 SEPTEMBER 2007

103002-3



switching between two stable states, which results from
stochastic modulation of the cavity detuning due to the
particles’ motion. Figure 3(a) presents the results of a
direct simulation of cavity cooling for N 	 5 particles
that are initially randomly dispersed inside the cavity
with a Gaussian distribution in velocity with zero mean
and dispersion of 0:016��. In Fig. 3(a), the evolution of
the velocity variance as a function of time is depicted for
both conventional (dashed) and bistable (solid) cavity
cooling. A series of sharp random steps is observed in
the curve describing the decrease of the average kinetic
energy in the bistable regime. Each step is correlated with a
‘‘jump’’ in the intracavity field intensity. As appears from
Fig. 3(a), the bistable cavity provides more efficient cool-
ing compared to the cooling in the same cavity but without
the feedback. Figure 3(b) presents similar results for N 	
25 particles. The observed slowing down in the cooling
rate with N is typical to regular cavity cooling techniques
[22], and to the class of stochastic cooling methods [8–11]
that includes our approach as well. For the conventional
cavity cooling this problem has been resolved by a proper
readjusting the parameters with the number of atoms [22],
and the achieved calculated cooling rate was reported to be
independent [23] of N. A detailed analytical and numerical
study of ensemble cooling in a bistable cavity, its depen-
dence on the external parameters, and scaling with the
number of particles will be reported elsewhere.

In conclusion, we have presented a new approach to
nonresonant laser cooling of atoms and molecules based
on their interaction with a bistable cavity. The cooling
mechanism presents a photonic version of Sisyphus cool-
ing, in which the conservative motion of the particles
(atoms or molecules) is interrupted by sudden transitions
between two stable states of the cavity mode. The me-
chanical energy is extracted due to the hysteretic nature of
those transitions. The bistable character of the cavity may
be achieved by an external feedback loop (like the one
considered in the present Letter) or by means of additional
nonlinear intracavity optical elements (saturable absorber,
nonlinear dispersion, etc. [20]). In contrast to the conven-
tional cavity cooling [6,7], in which atoms experience a
viscous-type force, bistable cavity cooling imitates ‘‘dry

friction’’, and stops atoms much faster. Our technique
operates in the ‘‘bad cavity’’ limit and preserves its effi-
ciency at low particle velocities. Classically, the limit to
this cooling mechanism is set by the trapping of particles in
the optical potential. Scattering losses, spontaneous emis-
sion, as well as quantum effects, none of which is included
in the present discussion, will limit the cooling near the
recoil limit, and under more stringent conditions. These are
the subject of ongoing studies. Finally, we expect that in
analogy to the methodology presented here, bistable cavity
cooling may also be advantageous for cooling of micro-
mechanical resonators [15–17].
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FIG. 3. Evolution of the velocity variance of the ensemble of
particles during cooling in a bistable cavity (solid line) and in a
conventional cavity (dashed line). (a) N 	 5 and (b) N 	 25.
The curves in (b) are numerically smoothened.
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