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We study a quantum phase transition between fermion superfluid (SF) and band insulator (BI) of
fermions in optical lattices. The destruction of the band insulator is driven by the energy gain in promoting
fermions from valance band to various conducting bands to form Cooper pairs. We show that the transition
must take place in lattice height Vo=ER between 2.23 and 4.14. The latter is the prediction of mean-field
theory while the former is the value for opening a band gap. As one moves across resonance to the
molecule side, the SF-BI transition evolves into the SF–Mott-insulator transition of bosonic molecules.
We shall also present the global phase diagram for SF-insulator transition for the BCS-BEC family.
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There have been strong interests in ultracold Fermi gases
near Feshbach resonance. Much of these interests have to
do with the nonperturbative nature of the problem and the
richness of the phenomena. On one hand, this system has
universal properties at resonance [1] difficult to calculate
by perturbative means. On the other hand, the ground state
turns out to be a robust fermion superfluid connecting the
usual BCS state to the Bose-Einstein condensate (BEC) on
different sides of the resonance [2]. The robustness of this
superfluid allows one to study intriguing phenomena such
as those related to pseudogap and unequal spin population.
Typically, the strength of a superfluid is reflected in its
resistance to perturbation. The upper critical magnetic field
of a superconductor is a good example. In the case of
neutral fermion superfluids, this corresponds to the critical
rotational frequency at which pairing is switched off.
Perturbation can also take the form of an optical lattice,
in which case, the strength of the superfluid is reflected in
the critical lattice height V�0 which destroys superfluidity.
Such an experiment has been performed recently by the
MIT group [3].

Since a homogenous Fermi gas can be changed contin-
uously from a BCS to a BEC superfluid as a function of
scattering length, the question is how the entire BCS-BEC
family is affected by a lattice potential. Clearly, the answer
depends on the fermion density. In the recent MIT experi-
ment [3], there are two fermions per site. Increasing the
lattice height V0 on the fermion side will lead to a transition
from BCS superfluid to a band insulator, whereas on the
molecular side, this transition will be from a boson super-
fluid to a Mott insulator with one boson per site [4]. While
it is the same transition, the properties of the superfluid and
insulating phases change continuously across the reso-
nance. At resonance, due to the universal behavior of the
system, one expects the critical lattice height V�0 (measured
in recoil energy ER) at which superfluid-insulator (SF-I)
takes place to be a universal number, which is a measure of
the strength of this robust superfluid.

It is interesting to note that in most solid state materials,
band gaps (� 1 eV) are several orders of magnitude larger

than typical pairing energies (� 0:1–1 meV). The situ-
ation is very different in strongly interacting Fermi gases.
First of all, the pairing energy is comparable to Fermi
energy. Second, the band gap is highly tunable. This offers
one a unique opportunity to study the competition between
pairing and lattice effects.

In this Letter, we shall study the transition between
superfluid and insulator near Feshbach resonance by vary-
ing lattice height. We shall determine the critical lattice
height V�0=ER and the size of the insulating region in a trap,
and discuss the global phase diagram at the end. Our study
is based on mean-field theory. Since the effects of pair
fluctuation are weak in the BCS regime but become in-
creasingly strong in the BEC regime, mean-field theory is
only accurate on the BCS side of the resonance, less
accurate near resonance, and becomes very poor on the
BEC side. The situation is identical to calculating Tc for
the crossover family, where fluctuation corrections grow
rapidly on the BEC side [5]. The simplicity of mean-field
theory, however, makes it a useful first step to study the
phase diagram on the BCS side, provided one realizes its
limitations. On the other hand, we shall see that the mean-
field theory (in the presence of lattices) provides a surpris-
ingly good result for critical lattice height at resonance as it
is sufficiently close to a rigorous lower bound. Moreover,
the qualitative feature provided by the mean-field theory is
informative enough for one to construct a global phase
diagram that extends to the BEC side.

(A) Band Structure.—The single particle Hamiltonian of
a 3D cubic optical lattice is H 0 �

P
ihi, i � 1, 2, 3, hi �

�@2@2
i =�2M� � V0sin2�Kxi�, K � �=�, where � is the

lattice spacing fixed by the wave length of the laser and
M is the mass of the fermion. Typically, V0 is measured in
units of ‘‘photon recoil energy’’ ER � @

2K2=�2M�. It is
numerically straightforward to calculate the Bloch func-
tion and energy of the 1D lattice Hamiltonian h [6], which
we denote as�n;k and �n;k, where n is the band index and k
is the crystal momentum. Bloch’s theorem implies the
expansion �n;k�x� �

P
mun;k�m�e

i�k�2mK�x, where k lies in
the first Brillouin Zone (BZ). The Bloch state of the 3D
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lattice H 0 is �nk �
P

Gunk�G�ei�k�G��r, where k�BZ,
�nk�x� �

Q3
i�1 �niki�xi�, unk�G� �

Q3
i�1 uniki�mi�, n �

fn1; n2; n3g is the band index and G �
f2m1K; 2m2K; 2m3Kg is the reciprocal lattice vector. The
energy eigenvalues are �nk �

P3
i�1 �ni;ki .

Note that except for the (lowest) s-band (0, 0, 0), all
higher bands are degenerate. For example, the p-bands (1,
0, 0), (0, 1, 0) and (0, 0, 1) are three-fold degenerate.
Numerically, we found that only when V0=ER > 2:23,
will a band gap Egap develop between the s-band and the
p-bands for this cubic lattice, as shown in Fig. 1(a).
Figure 1(b) shows how the band gap Egap grows with lattice
height V0.

(B) Mean-field Hamiltonian.—The many-body
Hamiltonian is H �H 0 �H int, H 0 �

P
nk��nk	

 ynk� nk�, where  ynk� creates fermion with quantum
numbers n, k and the spin �, �nk � �nk ��, � is chemi-
cal potential, and

 H int � g
X
�

�� 
y
m;k�p" 

y
m0;�k�p# n0;�k0�p# n;k0�p"; (1)

where � denotes the set fn;n0;m;m0;k;k0;pg. As
the ultraviolet behavior of particle interaction will not
be affected by lattice potentials with typical wavelength
�, the renormalization scheme of the coupling
constant g will be taken to be 1=g � m=�4�@2as� �

1=�
P

qm=@
2q2, where as is the s-wave scattering length,

and � is the volume [7]. Here, the q-sum is over all wave
vector q, not only in the first BZ.

Pairing with zero crystal momentum is described by
terms with p � 0 in Eq. (1). The corresponding coefficient
�� is then

 �� �
Z
d3r��m;k�r��

�
m0;�k�r��n0;�k0 �r��n;k0 �r�

�
X
G

Q�Gm;m0;k0Q
G
n;n0;k (2)

where QG
n;n0;k �

P
Qun;k�G�Q�un0;�k�G�Q�, and Q is

a reciprocal lattice vector. The reduced BCS Hamiltonian
then assumes the form

 H mf �
X

n�;k�BZ

��n;k ��� 
y
nk� n;k�

�
X
G

�
��G

X
n;n0;k�BZ

Qn;n0;k n;k" n0;�k# � H:c:

�
j�Gj

2

g

�
;

where ��G � g
P

n;n0;k�BZQ
�G
n;n0;kh 

y
n;k" 

y
n0;�k#i. By con-

struction, Hmf reduces to the noninteracting Hamil-
tonian H 0 as all �G vanish. The insulator described by
this mean-field theory is therefore a band insulator. This is
the limitation of the theory and will have to be corrected in
a more accurate theory.

Within this mean-field theory, the superfluid to insulator
(SF-I) transition is a consequence of the competition be-
tween the band insulator and a BCS superfluid. Starting
from a band insulator, it is necessary for the pairing inter-
action to be strong enough to overcome the band gap so
that a pair of fermions from the lowest band can be pro-
moted to a higher band to facilitate number fluctuations
necessary for formation of superfluid.

(C) SF to insulator transition.—Since we are interested
in the onset of pairing order, we expand the free energy in
powers of �G as

 F �
X
G

�
�

m

4�@2as
�WG

�
j�Gj

2 � o�j�j4�; (3)

where WG is the pairing susceptibility. At zero tempera-
ture, it is

 WG � ��1
X

k�BZ

X
n;n0

jQG
n;n0;kj

2
���n;k� ����n0;�k��

�n;k � �n0;�k

���1
X

q

1

@
2q2=m

; (4)

where ��x� � 1=2��1=2� for x > 0�x < 0�. The system is
SF if at least one of �G is not zero, which requires at least
one WG >�m=�4�@2as�.

Since un;�k��Q� � u�n;k�Q�, we write QG
n;n0;k �P

Qu
�
n0;k��Q�G�un;k�G�Q� �

R
d3r��n0;k�r��n;k�r�	

e�i2Gr. We also find numerically that WG�0 is always
larger than WG�0 as expected. So the Cooper instability
first occurs at the zero-momentum channel. Since
QG�0

n;n0;k � 	n;n0 , the condition for superfluidity can be
greatly simplified as

 WG�0 �
1

�

� X
k�BZ

X
n

1

2j�n;kj
�
X

q

1

@
2k2=m

�
>�

m

4�@2as
:

(5)

Equation (5) shows that WG�0 must be of the form

 WG�0 � K3E�1
R W ��=ER; V0=ER�; (6)

FIG. 1. (a) Density of states (DOS) for V0 � 2ER (dashed line,
no band gap) and V0 � 3ER (solid line, finite band gap) of a
cubic lattice. Egap is the band gap between the lowest band and
the first excited band. (b) Band gap as a function of lattice depth.
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where W is a dimensionless function. The condition
Eq. (5) for superfluidity then becomes

 W ��=ER; V0=ER�>�1=�8�Kas�: (7)

The function W has the following properties: (a) It
diverges whenever � lies in a band and is finite when �
is within a band gap. This is a consequence of the integrand
j�n;kj

�1 � j�n;k ��j�1 in Eq. (5). The behavior of W for
different Vo is plotted as a function � in Fig. 2, where we
have only displayed the part of W for � within the first
band gap [8].

For given V0, as� rises from the top of the s-band to the
bottom of the p-band, W drops from a divergent value to a
finite minimum and then rises back to a divergent value.
This minimum will occur at ���V0� somewhere inside the
band gap. This minimum value of W will be denoted as
W ��V0� �W ����V0�=ER; V0=ER�, which is important
for determining the phase diagram. (b) As Vo increases,
the band gap is widened. At the same time, as shown in
Fig. 2, the curve W as well as its minimum ���V0�
are shifted to the higher of V0, while the value of
W ��V0� drops. For given as, there is an ‘‘onset’’
lattice height (denoted as Vonset) where the minimum
of W barely touches �1=�8�Kas�, i.e., W ��Vonset� �
W ����Vonset�=ER; Vonset=ER� � �1=�8�Kas�. The
chemical potential where this touching occurs will be
denoted as �onset � ���Vonset�. The word onset means
that this is the minimal value of V0 for the band insulator
to occur in some range of chemical potential.

(D) Determination of phase boundary.—The phase
boundary on the �-V0 plane separating the superfluid and
the band insulator is given by W ��=ER; V0=ER� �
�1=�8�Kas�, which can be determined graphically as
shown in Fig. 2. As discussed before, we shall focus on
1=�Kas�< 1, i.e., on the BCS side and around resonance
but not on the BEC side. The graphical method works as
follows: (i) If W intersects �1=�8�Kas� so that it lies
below�1=�8�Kas� over an interval of�, say, (�‘,�u), as

shown in the case of V0 � 6ER in Fig. 2, the system is a
band insulator within this interval of �. See also Fig. 3.
(ii) As V0 decreases, the curve W rises. As a result, the
interval (�‘, �u) shrinks, and the values �‘ and �u get
closer to each other. When V0 reaches a critical value
Vonset, the insulating interval shrinks to zero, and �‘ �
�u � �onset, as shown in the case of V0 � 4:5ER. In this
way, the points �‘ and �u trace out a phase boundary
shown in Fig. 3. These values Vonset and �onset are identical
to those defined in point (b) in Section (C). In Fig. 3, the
phase boundaries for different 1=�Kas� have been dis-
placed. The onset lattice height Vonset as a function of as
has also shown in Fig. 3(b). At resonance, it shows that
Vonset � 4:14ER. Since a band gap only appears for V0 >
2:23ER, the mean-field theory therefore predicts that in a
three dimensional cubic lattice, the critical lattice height
for the onset of the first insulating phase is between 2:23ER
and 4:14ER at resonance. It should be noted that these
numbers predicted here depend on the lattice type (such
as f.c.c. and b.c.c.), since they have different band struc-
ture. It should also be noted that the lattice height 4:14ER
for SF-I transition is rather shallow. At this lattice height,
tight binding approximation is not valid, and also the

FIG. 2 (color online). The function W defined in Eq. (6) as a
function of chemical potential �=ER, for V0 � 4ER, 4:5ER, and
6ER, respectively. If W is above the horizontal (red) dashed line
whose value is �1=�8�Kas�, the system is a superfluid for all
chemical potentials. Insulator occurs when a portion of W falls
below �1=�8�Kas�. In the case of Vo � 6ER, this occurs in the
chemical potential interval (�l, �u).

FIG. 3 (color online). (a) The�-V0 phase diagram for different
scattering length, where �1=�Kas� � 1, 0, and �1 respectively.
The dashed line denotes the bottom of the lowest band, which
monotonically increases as the increase of zero-point energy.
The dotted vertical line T is the trajectory of local chemical
potential from the center of the trap (c) to the edge of the cloud
(e). (b) Solid line: Vonset as a function of�1=�Kas�. Dashed line:
the lowest lattice depth for opening up a band gap. (c) Schematic
density profile in trap for V > Vonset and V < Vonset, respectively.
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system can not be described by a single band attractive
Hubbard model. (iii) In the presence of a trap, within the
local density approximation, the chemical potential is a
function of position, ��r� � �-V�r�, where V�r� is the
trapping potential. Going from the center to the surface
of the gas, a vertically downward trajectory T is generated
in the �-V0 space. If this trajectory passes through the
insulating region as shown in Fig. 3(a), this will show up as
a step structure in the in situ density profile as shown in
Fig. 3(c).

Starting from a superfluid, as V0 increases, an insulating
lobe will move toward the physical trajectory T from the
right in Fig. 3(a). When the lobe touches T , which hap-
pens when V0 � Vonset with the point of contact occurs at
�onset, the insulating phase will develop at the location r
where ��r� � �onset [9].

(E) Global phase diagram.—It is useful to consider the
phase diagram in the space of chemical potential �, lattice
height V0, and interaction parameter �1=�Kas�. In the
absence of lattice, the ground state can evolve continuously
from a BCS state to a BEC by shrinking the size of the pair
wave function continuously [10]. In the case of two fer-
mion per site, as Vo increases, the fermion superfluid on the
BCS side (which is made up of Cooper pairs of Bloch
states) will evolve continuously into a bosonic superfluid
with one boson per site on the average on the BEC side. For
sufficiently high Vo, the ground state on the BCS side will
be a band insulator, whereas it will be a Mott insulator (or a
Fock state) with one boson per site on the BEC side. Since
a band insulator can be written as a Fock state with two
fermions in the same Wannier state on each site, a band

insulator can also evolve continuously into a Mott insulator
by simply changing the wave function of a fermion pair
with opposite spin on the same site. In this way, there is a
crossover of both superfluid and insulator as one crosses
the resonance. Note that while filling the lowest (s) band on
the BCS side requires two fermions per site, filling an
additional (p) band requires totally eight fermions per
site. The Mott insulators on the BEC side, however, can
have any integer number of bosons or any even integer
number of fermions per site. To go from the BEC side to
the BCS side, only Mott phases with 1 and 4 bosons can
cross over to a band insulator. Mott phases with 2 and 3
bosons (or 4 and 6 fermions) per site must disappear as they
approach the fermion side. The phase diagram will there-
fore look like Fig. 4 schematically.
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