
Universal Alternating Order around Impurities in Antiferromagnets
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The study of impurities in antiferromagnets is of considerable interest in condensed matter physics. In
this Letter we address the elementary question of the effect of vacancies on the orientation of the
surrounding magnetic moments in an antiferromagnet. In the presence of a magnetic field, alternating
magnetic moments are induced, which can be described by a universal expression that is valid in any
ordered antiferromagnet and turns out to be independent of temperature over a large range. The
universality is not destroyed by quantum fluctuations, which is demonstrated by quantum Monte Carlo
simulations of the two-dimensional Heisenberg antiferromagnet. Physical predictions for finite doping are
made, which are relevant for experiments probing Knight shifts and the order parameter.
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The intentional doping of antiferromagnetic materials
has become a useful tool in order to study the complicated
physics in the context of high temperature superconductiv-
ity and quantum magnetism [1–6]. Large alternating mag-
netic moments around static nonmagnetic impurities are
observed in Knight shift experiments when a uniform field
is applied [3–6]. Theoretical studies have shown that
vacancies in low-dimensional antiferromagnetic back-
grounds give rise to locally enhanced antiferromagnetic
correlations [7–14], which strongly depend on the micro-
scopic model and temperature in the low-dimensional
models.

In this work, we show that in generic ordered antiferro-
magnets the alternating local moments in the vicinity of
vacancies can be quantitatively described by a universal
expression which only depends on the field B, but is
surprisingly independent of temperature, quantum fluctua-
tions, and microscopic details. The mechanism which
gives rise to the alternating moments is a local tilting of
the order parameter due to the broken sublattice symmetry
by impurities. In contrast to the pure sample, where the
order parameter is always confined in the plane normal to
the field, a large alternating order parallel to the field is
induced as schematically depicted in Fig. 1. The calcula-
tions agree remarkably well with quantum Monte Carlo
(QMC) simulations without any adjustable parameters
even in two dimensions D � 2, where quantum fluctua-
tions are strongest.

The typical antiferromagnetic Hamiltonian

 H � J
X
hi;ji

Si � Sj �
X
j

BSzj (1)

describes the magnetic behavior realistically even for
rather complex materials despite its simplicity. We con-
sider systems with bipartite lattices of dimension D � 2,
where the sum in Eq. (1) runs over nearest neighbor sites.
Generically, the dominant interaction J > 0 comes from

the Coulomb forces via the exchange mechanism and is
therefore isotropic. The rotational symmetry is broken by
applied and crystal fields B in units of g�B, which are
typically small compared to the interaction B< J. The
direction of the field defines the z axis of our coordinate
system, which does not need to coincide with any of the
lattice directions. For bipartite lattices of dimensionD � 2
the model system (1) is known to have finite Néel order at
sufficiently low temperatures for both quantum and classi-
cal spins Si of any size s [15]. The ordered state remains
stable over a large range of perturbations by impurities and
frustrating interactions.

In order to obtain an intuitive picture of the physical
behavior, let us first consider a highly simplified model of
the Hamiltonian (1). The long-range order spreads over the
entire sample, so it might be justified to describe all
ordered spins on one sublattice A by a common direction
n̂A � �sin�A sin�A; sin�A cos�A; cos�A� and analogously
for sublattice B. In this case, the interaction energy is
always minimized by a relative azimuthal angle �A �
�B � �, so that the effective energy is given just in terms
of the polar angles

B

sNnA

sNnB

FIG. 1 (color online). Schematic illustration of the effect of a
vacancy in an ordered antiferromagnet. The spins ’’cant’’ with an
angle � towards the field corresponding to a small uniform
magnetization. Because of the broken sublattice symmetry the
order may be ’’tilted’’ by an angle � relative to the plane normal
to the field corresponding to an induced alternating magnetiza-
tion around the impurity.
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 Eeff � JzNs2n̂A � n̂B � sNB�n
z
A � n

z
B�

� JzNs2 cos��A � �B� � sNB�cos�A � cos�B�

� JzNs2�2sin2�� 1� � 2sNB cos� sin�; (2)

where z is the number of nearest neighbors and N is the
total number of sublattice sites in the sample. The angle
� � ��� �A � �B�=2 corresponds to a uniform ‘‘cant-
ing’’ of all spins on both sublattices towards an applied
magnetic field as shown in Fig. 1. The angle � � ��B �
�A�=2 measures the ’’tilt’’ of the antiferromagnetic order
relative to the plane that is normal to the field.

Below saturation B< 2szJ the energy is minimized by
setting sin� � B

2szJ cos� which gives an effective low en-
ergy description for �

 Eeff��� �
NB2

2zJ
sin2�� E0; (3)

where E0 � �JNs2z� NB2=2zJ. The physical interpre-
tation of this simple model is textbook knowledge [17]: all
spins align slightly towards the magnetic field m �
shsin�i � B�? cos� with a susceptibility �? � 1=2zJ
that is largest when the magnetic field is perpendicular to
the order and therefore there is a small energy gain for the
Néel order to be in the plane normal to B (i.e., � � 0).
Since the energy gain is small, the order may point in
another direction in realistic materials where the sublattice
symmetry is broken. A common source of sublattice sym-
metry breaking is disorder and impurities which is the topic
of this Letter.

Let us first consider a single vacancy in the framework of
the simple model above by reducing the size of the corre-
sponding sublattice vector by one spin NA � s�N � 1�n̂A.
Starting from Eq. (2) the susceptibility for � remains the
same for large N. However, the size of the two sublattice
spins is not equally large and therefore a net coupling to the
field remains in the effective energy as a function of the z
component of the alternating order nz � sin�

 Eeff�nz� � NB2�?n
2
z � sBnz � E0; (4)

where we have also used that the dependence on � is small
and irrelevant in the direct coupling term. Even thoughN is
large, the second term will ensure that the expectation
value of the impurity induced alternating order along the
field nz is always nonzero

 hnzi �
1

Z

Z 1

�1
dnze��Eeff �nz�nz

�
s

BN�?

�
1

2
�

e�B
2N�?�R

1
�1 e

�x2B2N�?�dx

�
; (5)

where we have assumed the thermodynamic limit N 	 �J
(� � 1=kBT). In the limit of small and large fields, re-
spectively, we find

 hnzi �
�
sB=3T for N�?B2 
 T
s=2NB�? for N�?B2 	 T

: (6)

In the first case of very small fields, the alternating
response to a uniform field is described by a classical
susceptibility, which also directly follows from Eq. (4) if
only the second term is kept (i.e., �?B! 0). Therefore, a
tilting of the order parameter of order �� B=T is expected
which is larger than the uniform canting �� B=J in the
ordered phase T 
 J. By QMC simulations it was shown
that a corresponding alternating order is induced through-
out the lattice by a single vacancy in the limit of linear
response [11], which is consistent with the assumption that
� describes the tilting of all spins. The corresponding
impurity susceptibility is given by a classical Curie behav-
ior s2=3T, as first predicted in Ref. [2] and confirmed by
QMC simulations in Ref. [18] in the limit of linear re-
sponse N�?B2 
 T. This limit is only relevant in the case
where the domain size N is restricted by disorder or
boundaries.

However, if N is macroscopic, the limit N�?B2 	 T is
already reached for any naturally occurring background
field, so that the second case in Eq. (6) is the more inter-
esting limit for the description of realistic impurity effects.
The induced alternating magnetization decreases with in-
creasing field and the behavior is independent of tempera-
ture since corrections from the second term in Eq. (5) are
exponentially small in the macroscopically large scaling
variable N�?B2�. This remarkable behavior will survive
even in more refined models and give rise to a universal
temperature independent description as we will see.

In order to make the model more realistic, the angle �
can be interpreted as a local tilting that is dependent on
position in order to reflect the fact that the first term in
Eq. (4) is an effective potential that acts on all spins in the
lattice, while the second term arises from the vacancy
locally at the origin. There is an energy cost to change
the direction of the order parameter from one lattice site to
a neighboring lattice site corresponding to the so-called
spin stiffness 	s, so that Eq. (4) has to be generalized to an
energy functional for nz
 

E�nz�r�� �
Z
dDr

�
	s
2
�rnz�r��2 �

�?
2
B2n2

z�r�
�
� sBnz�0�;

(7)

where we have replaced the sum over both sublattices by
an integral for convenience. The energy density in the first
term is reminiscent of the nonlinear sigma model [19,20],
but only for one component and without the imaginary
time direction describing the quantum fluctuations.

In order to calculate the expectation value of hnz�r0�i at
any position r0, it is useful to define a generating partition
function

 Z
 �
Z

D�nz�r�� expf��E�nz�r�� � 
nz�r0�g: (8)

The expectation value is then given by the logarithmic
derivative

 hnz�r0�i � @
 lnZ
j
�0: (9)
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In momentum space the partition function becomes

 Z
 �
Z

D�nz�q��e
R
dDq���Eqjnz�q�j2�Iq�
�nz�q��; (10)

where

 Eq � �	sq2 � �?B2�=2 (11)

 Iq�
� � ��Bs� 
 cosq � r0�=�2��D=2: (12)

The expectation value is therefore

 hnz�r0�i � @
 lnZ
j
�0

� @

Z
dDq ln

Z
dnze

��Eqn2
z�Iq�
�nz j
�0

� @

Z dDq

�2��D=2

I2
q�
�

2��	sq
2 � �?B

2�

��������
�0

�
Z dDq
�2��D

Bs cos�q � r0�

�	sq2 � �?B2�
(13)

 �

8<
:

sB
2�	s

K0�
B
c r� D � 2

sB
4�	sr

e�Br=c D � 3
(14)

where c �
���������������
	s=�?

p
is known as the spin-wave velocity

and K0 is the modified Bessel function. This result is
remarkable in two ways: first of all, it turns out to be
completely independent of temperature and secondly, it
is independent of the underlying detailed microscopic
model. Therefore, the formula in Eq. (13) can be taken as
a universal description for all antiferromagnets in the
ordered phase. Variations in the lattice structure, frustra-
tion, quantum effects, and the detailed microscopic pa-
rameters only renormalize the spin stiffness 	s and the
uniform susceptibility �?, but not the functional behavior
in Eq. (14). For spins close to the vacancy r * 1 the tilting
nz � sB=4�	s remains typically less than saturation, but
larger than the uniform canting �> �, so that spins on the
same sublattice as the vacancy tend to align against the
field.

It can be checked that the functions in Eq. (14) are
solutions of the diffusion equation

 B2�?nz � 	sr
2nz (15)

that also follows from minimizing the energy functional
Eq. (7). In lattices where the spin stiffness is not isotropic,
the result can be generalized by taking 	s as an anisotropic
diffusion coefficient.

As a concrete example, we will now consider the
spin-1=2 Heisenberg model on a 2D square lattice, which
is possibly the most studied antiferromagnetic model, since
it has received much attention in connection with high
temperature superconductivity, but also because it is an
interesting case where quantum fluctuations strongly com-
pete with Néel order.

In Monte Carlo simulations we have used the stochastic
series expansion with directed loop updates [21] in order to
extract the magnetic moments hmzi around a single va-

cancy in small magnetic fields in the ordered phase
��T� 	 L (here L � 128) as shown in the inner inset of
Fig. 2. In the plane perpendicular to the field the order is
fluctuating, so that hmxi � hmyi � 0. For the moments
parallel to the field, we expect to find a large staggered
magnetization according to Eq. (14)

 hmz�r�i � ��1�rmmax
sB

2�	s
K0

�
B
c
r
�

(16)

in addition to the less interesting small uniform canting �.
Here mmax 
 0:308 is the maximum order in the 2D
Heisenberg model which is reduced from s � 1=2 due to
quantum fluctuations. In fact, there are no adjustable pa-
rameters in Eq. (16) since all relevant parameters have long
been established to high precision by independent methods
[16].
 

mmax 
 0:308; 	s 
 0:18J;

�? 
 0:065=J; c �
���������������
	s=�?

q

 1:67J:

(17)

By extrapolating the numerical data for mz�r� on the
even and the odd sublattice separately and taking half the
difference, we extracted the staggered magnetization
malt�r� around a vacancy. The resulting alternating ampli-
tude malt is completely isotropic and can be plotted as a
function of the geometrical distance r � jrj only as shown
in Fig. 2 for different fields and temperatures. While the
size of malt is proportional to the field, the dropoff is
shortened for higher fields so that the integrated amplitude

5 10 15 20 25 30 35 40
 geometrical distance r

0

0.02

0.04

0.06

m
alt

B=0.1J
B=0.2J
B=0.4J
B=0.8J

5 10 15 20 25 30
0.001

0.01

T=0.10J
T=0.20J
T=0.25J
T=0.33J
T=0.40J

FIG. 2 (color online). The alternating response malt as a func-
tion of geometrical distance r from a vacancy in a 2DHAF at
different fields and T � 0:025 J from QMC simulations com-
pared to the universal theoretical prediction mmaxnz in Eq. (16)
without any adjustable parameters (dashed black lines). Inset:
malt at B � 0:2 J. Even at higher T � 0:1 J no deviations from
Eq. (16) can be seen on a logarithmic scale. At still higher T the
induced order first increases for 0:3 J * T * 0:2 J and then
decreases again for T * 0:3 J. Inner inset: magnetic moments
at B � 0:1 J and T � 0:1 J alternating between the extrapolated
amplitudes on even and odd sublattices.
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decreases with increasing field as also reflected in the
simple model of Eq. (5). The agreement with Eq. (16) is
remarkably good even on a logarithmic scale and for
widely different fields and temperatures, which we take
as confirmation for the general validity of the result in
Eq. (13). Since there were no adjustable parameters, we
conclude that the quantitative predictive power for static
expectation values of the hydrodynamic model in Eq. (7) is
not changed by quantum fluctuations. From a theoretical
point of view this means that the renormalized classical
model [19,20] can be taken for quantitative calculations
anywhere in the antiferromagnetic phase, while micro-
scopic details only affect the values of the constants in
Eq. (17). In particular, close to a critical point 	s and mmax

become vanishingly small, but the model remains valid.
A breakdown of the universal formula in Eq. (13)

must occur at the transition temperature to the disordered
phase. In the 2D simulations we find indeed that any
temperature dependence is exponentially suppressed until
the Kosterlitz-Thouless temperature is approached [22]
TKT � 0:2 J. However, the induced alternating magnetiza-
tion is surprisingly enhanced by increasing temperature
near TKT as shown in the inset of Fig. 2. Only at still higher
temperatures T * 0:3 J the induced order is finally re-
duced as expected, leading to a nonmonotonic behavior
with temperature. While we have no explanation of this
exotic effect in terms of our model, we hope that future
works on this topic may uncover this mystery.

Finally, we would like to generalize our results to finite
impurity concentrations 	. For higher fields/small concen-
trations 	 < �B=c�D the impurities are sufficiently far apart
to be treated independently (dilute limit). In this case, the
above conclusions are unchanged and the magnetic order is
tilted locally in the vicinity of each vacancy. At smaller
fields (larger concentrations) 	 > �B=c�D the impurities
become correlated and enhance (annihilate) the tilting
effect depending if they are on the same (opposite) sub-
lattices [11]. In this disorder limit all impurities become
correlated and the tilting is again nearly uniform through-
out the lattice, with an effective total impurity strength that
is given by the difference of the vacant sites on each
sublattice jNA � NBj �

�������
	N
p

in a domain of size N. In
this case the simple model in Eq. (4) remains valid with the
effective size of the spin s in the last term replaced by
s
�������
	N
p

. The average universal tilt in Eq. (6) throughout the
domain is then given by mmaxs

����
	
p

=2
����
N
p

B�?.
In conclusion, we have analyzed the induced alternating

magnetization around vacancies in ordered antiferromag-
nets in quantitative detail. Large alternating moments are
induced parallel to the field, which corresponds to a tilting
of the order parameter. The induced order decays with
distance at a rate that is independent of temperature and
inversely proportional to the field c=B. From a theoretical
point of view we have demonstrated that the renormalized
classical description gives an intuitive insight into the
mechanism on how the alternating magnetization arises.

At the same time, the theory gives good quantitative agree-
ment with QMC simulations even in 2D where quantum
fluctuations are large. At large impurity densities 	 >
�B=c�D the impurities become correlated and give rise to
a tilt of the order throughout the sample towards the field
direction. The predicted effects can be observed by Knight
shift experiments like NMR and �SR, or by investigating
the order directly via magnetic neutron scattering.
Numerically we find an enhancement of the induced order
near the Kosterlitz-Thouless transition TKT * 0:2 J which
is counterintuitive and calls for further investigation.
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inspired us to investigate this topic. The collaboration was
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