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Coulomb interaction turns anyonic quasiparticles of a primary quantum Hall liquid with filling factor
� � 1=�2m� 1� into hard-core anyons. We have developed a model of coherent transport of such
quasiparticles in systems of multiple antidots by extending the Wigner-Jordan description of 1D
Abelian anyons to tunneling problems. We show that the anyonic exchange statistics manifests itself in
tunneling conductance even in the absence of quasiparticle exchanges. In particular, it can be seen as a
nonvanishing resonant peak associated with quasiparticle tunneling through a line of three antidots.
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Quasiparticles of two-dimensional (2D) electron liquids
in the regime of the fractional quantum Hall effect (FQHE)
have unusual properties of fractional charge [1] and frac-
tional exchange statistics [2,3]. The fractional charge was
observed in experiments on antidot tunneling [4] and shot-
noise measurements [5,6]. The situation with fractional
statistics is so far less certain even in the case of the
Abelian statistics, which is the subject of this work.
Although the recent experiments [7] demonstrating un-
usual flux periodicity of conductance of a quasiparticle
interferometer can be interpreted as a manifestation of
the fractional statistics [8,9], this interpretation is not uni-
versally accepted [10,11]. There is a number of theoretical
proposals (see, e.g., [12,13] ) suggesting tunnel structures
where the statistics should manifest itself through noise
properties. Partly due to complexity of noise measure-
ments, such experiments have not been performed success-
fully up to now. In this work, we show that coherent
quasiparticle dynamics in multiantidot structures should
provide clear signatures of the exchange statistics in dc
transport. Most notably, in tunneling through a line of three
antidots, fractional statistics leads to a nonvanishing peak
of the tunnel conductance which would vanish for integer
statistics.

These effects rely on the ability of quantum antidots to
localize individual quasiparticles of the QH liquids
[4,14,15]. The resulting transport phenomena in antidots
are very similar to those associated with the Coulomb
blockade [16] in tunneling of individual electrons in dots.
For instance, similarly to a quantum dot [17], the linear
conductance of one antidot shows periodic oscillations
with each period corresponding to the addition of one
quasiparticle [4,14,15,18,19]. Recently, we have developed
a theory of such Coulomb-blockade-type tunneling for a
double-antidot system [20], where quasiparticle exchange
statistics does not affect the transport. The goal of this
work is to extend this theory to antidot structures where
the statistics does affect the conductance. The two simplest
structures with this property consist of three antidots and
have quasi-1D geometries with either periodic or open

boundary conditions (Fig. 1). A technical issue that needed
to be resolved to calculate the tunnel conductance is that
the anyonic field operators defined through the Wigner-
Jordan transformation [21–24] are not fully sufficient in
the situations of tunneling. As we show below, to obtain
correct matrix elements for anyon tunneling, one needs to
keep track of the appropriate boundary conditions of the
wave functions which are not accounted for directly in the
field operators.

Specifically, we consider the antidots coupled by tunnel-
ing among themselves and to two opposite edges of the
quantum Hall liquid (Fig. 1). The edges play the role of the
quasiparticle reservoirs with the transport voltage V ap-
plied between them. We assume that the antidot-edge
coupling is weak and can be treated as a perturbation.
Quasiparticle transport through the antidots is governed
then by the kinetic equation similar to that for Coulomb-
blockade transport through quantum dots with discrete
energy spectra [25]. Coherent quasiparticle dynamics re-
quires that the relaxation rate �d created by direct
Coulomb antidot-edge coupling is weak. This condition
should be satisfied if the edge-state confinement is suffi-
ciently strong [20]. The requirement on the confinement is
less stringent in the case of the antidot line [Fig. 1(b)], in

(a)

(b)

FIG. 1. Tunneling of anyonic quasiparticles between opposite
edges of an FQHE liquid through quasi-1D triple-antidot sys-
tems: (a) loop, (b) open interval. Quasiparticles tunnel between
the edges and the antidots with rates �1;2. The antidots are
coupled coherently by tunnel amplitudes �.
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which antidot quasiparticles move along the edge, sup-
pressing the antidot-edge coupling at low frequencies.
We also assume that all quasiparticle energies on the anti-
dots, tunnel amplitudes �, temperature T, and Coulomb
interaction energies U between quasiparticles on different
antidots are much smaller than the energy gap �� for
excitations on each antidot. This condition ensures that
the state of each antidot is characterized completely by
the occupation number n of its relevant quantized energy
level. In any given range of the backgate voltage or mag-
netic field (which produces the overall shift of the antidot
energies—see, e.g., [4,14,15] ), there can be at most one
quasiparticle on each antidot, n � 0, 1. This ‘‘hard-core’’
property of the quasiparticles means that they behave as
fermions in terms of their occupation factors, despite the
anyonic exchange statistics. All these assumptions can be
summarized as: �d, �j � �, U, T � ��.

Under these conditions, the antidot tunneling is domi-
nated by the antidot energies. The quasi-1D geometry of
the antidot systems we consider makes it possible to in-
troduce the quasiparticle ‘‘coordinate’’ x numbering suc-
cessive antidots; e.g., x � �1, 0, 1 for systems in Fig. 1.
The quasiparticle Hamiltonian can be then written as

 H �
X
x

��xnx � ��x�
y
x�1�x � H:c:�	 �

X
x<y

Ux;ynxny; (1)

where �x are the energies of the relevant localized states on
the antidots (taken relative to the common chemical po-
tential of the edges at V � 0), �x is the tunnel coupling
between them,Ux;y is the quasiparticle Coulomb repulsion,
and nx 
 �yx �x. The quasiparticle operators �yx , �x in (1)
can be viewed as the Klein factors left in the standard
operators for the edge-state quasiparticles when all the
edge magnetoplasmon modes are suppressed by the gap
��. Characteristics of such Klein factors depend on the
geometry of a specific tunneling problem; nontrivial ex-
amples can be found in [12,13,26,27]. In the Hamiltonian
(1), �x describe the hard-core anyons with exchange sta-
tistics ��. Wigner-Jordan transformation expresses them
through the Fermi operators cx [21]:

 �x � ei����1�
P

z<x
nzcx; �y�x � �x�yei��sgn�x�y�;

(2)

with similar relations for �y.
Anyonic statistics creates an effective interaction be-

tween the quasiparticles which can be understood as the
Aharonov-Bohm (AB) interaction between a flux tube
‘‘attached’’ to one of the particles and the charge carried
by another. In general, this interaction can be masked by
the direct Coulomb interaction Ux;y. In the antidot loop
[Fig. 1(a)], however, Ux;y is constant, Ux;y � U, and the
interaction term in (1) reduces to Un�n� 1�=2, with
n �

P
xnx—the total number of the quasiparticles on the

antidots. In this case, the Coulomb interaction contributes
to the energy separation between the group of states with
different n, but does not affect the level structure for given

n. The hard-core property of quasiparticles limits n to the
interval [0, 3]. For n � 0 and n � 3, the system has the
‘‘empty’’ and ‘‘completely filled’’ state with respective
energies E0 � 0, E3 �

P
x�x � 3U. The spectrum E1k of

the three n � 1 states j1ki �
P
x�k�x��

y
x j0i is obtained as

usual from (1). In the uniform case �x � �, �x � �, with
an external AB phase ’, one has �k�x� � eikx=L1=2 and

 E1k � �� � cosk; k � �2�m� ’�=L; (3)

where m � 0, 1, 2, and the loop length is L � 3.
Anyonic statistics can be seen in the n � 2 states, j2li �

�1=
���
2
p
�
P
xy l�x; y��

y
y �
y
x j0i. The fermion-anyon relation

(2) suggests that the stationary two-quasiparticle wave
functions should coincide up to the exchange phase with
that for free fermions:

  l�x; y� �
ei��1���sgn�x�y�=2���

2
p det

�q�x� �q�y�
�p�x� �p�y�

� �
: (4)

Here �s are the single-particle eigenstates of the
Hamiltonian (1). [The states (4) are numbered with the
index l of the third ‘‘unoccupied’’ eigenstate of (1) com-
plementary to the two occupied ones q, p.] The boundary
conditions for the�s are affected by the exchange phase in
Eq. (4). To find them, we temporarily assume for clarity
that coordinates x, y are continuous and lie in the interval
�0; L	. Subsequent discretization does not change anything
substantive in this discussion. The 1D hard-core particles
are impenetrable and can be exchanged only by moving
one of them, say, x, around the loop from x � y� 0 to x �
y� 0 [Fig. 2(a)]. Since the loop is imbedded in the under-
lying 2D system, such an exchange means that the wave
function acquires the phase factor ei��, in which the sign of
� is fixed by the properties of the 2D system, e.g., the
direction of magnetic field in the case of FQHE liquid.
Next, if the second particle is moved similarly, from y �
x� 0 to y � x� 0, the wave function changes in the same
way, for a total factor ei2��. Equation (4) shows that only
one of these changes can agree with the 1D form of the
exchange phase. As a result, the wave function (4) satisfies
different boundary conditions in x and y:

  l�L; y� �  l�0; y�ei’;  l�x; L� �  l�x; 0�ei�’�2���:

(5)

Conditions (5) on the wave function (4) mean that the
single-particle functions � in (4) satisfy the boundary

(a) (b)

0,L

xy
x

y

FIG. 2. Exchanges of hard-core anyons on a 1D loop: (a) real
exchanges by transfer along the loop embedded in a 2D system
and (b) formal exchanges describing the assumed boundary
conditions (5) of the wave function.
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condition that correspond to the effective AB phase ’0 �
’� �� ��, i.e., the addition of an extra quasiparticle to
the loop changed the AB phase by �� ��, where ���
comes from the exchange statistics and � from the hard-
core condition. This gives the energies of the two-
quasiparticle states (4) as U � E1q � E1p, where, if the
loop is uniform, the single-particle energies are given by
Eq. (3) with ’! ’0. In this case,

P
kE1k � 0, and the

energies E2l of the two-quasiparticle states are

 E2l � 2��U� � cosl; (6)

where l � �2�m0 � ’� ���=3, and m0 � 0; 1; 2.
One of the consequences of this discussion is that the

sign of � in the 1D exchange phases of Eqs. (2) and (4) can
be chosen arbitrarily for a given fixed sign of the 2D
exchange phase. Reversing this sign only exchanges the
character of the boundary conditions (5) between x and y.
This fact has a simple interpretation. Although the 1D
hard-core anyons cannot be exchanged directly, formally,
coordinates x and y in Eq. (4) are independent and one
needs to define how they move past each other at the point
x � y. Depending on whether the x particle moves around
y from below or [as in Fig. 2(b)] from above, its trajectory
does or does not encircle the y particle, and the boundary
condition for x is or is not affected by the statistical phase.
The choice made for x immediately implies the opposite
choice for y [Fig. 2(b)], accounting for different boundary
conditions (5). This interpretation shows that in calculation
of any matrix elements, the participating wave functions
should be taken to have the same boundary conditions.
While this requirement is natural for processes with the
same number of anyons, it is less evident for tunneling that
changes the number of anyons. Indeed, the most basic,
tunnel Hamiltonian, description of tunneling into the point
z of the system leads to the states
 

�yz j1ki � �1=
���
2
p
�
X
xy

 k�x; y��
y
y �
y
x j0i;

 k�x; y� � ��k�x��y;z � e
i��1���sgn�x�y��x;z�k�y�	=

���
2
p
:

(7)

One can see that Eq. (7) automatically implies specific
choice of the boundary conditions which corresponds to
the tunneling anyon not being encircled by anyons already
in the system. This means that in the calculation of the
tunnel matrix elements with the states (4), one should
always pair the coordinate of the tunneling anyon with
the discontinuous one in (5). Then, the tunnel matrix
elements are obtained as

 h2lj�yz j1ki �
���
2
p X

x

 �l �x; z��k�x�: (8)

For instance, in the case of uniform loop with states (3) and
(6), we get up to an irrelevant phase factor

 h2lj�yz j1ki � �2=3� cos��k� l�=2	: (9)
Specific anyonic interaction between quasiparticles can be
seen in the fact that the matrix elements (9) do not vanish
for any pair of indices k, l. In the fermionic case � � 1, one

of the elements (9) always vanishes for any given k, since
the two-particle state after tunneling necessarily has one
particle in the original single-particle state. By contrast, the
tunneling anyon can shift existing particle out of its state.

The matrix elements involving empty or fully occupied
states coincide with those for fermions. Taken together
with Eqs. (8) and (9) for transitions between the
partially filled states, they determine the rates �j�E� �
�jf��E�jh�

y
z ij2 of tunneling between the jth edge and the

antidots, where �j is the overall magnitude of the tunneling
rate, and
 

f��E� � �2�T=!c�
��1j���=2� iE=2�T�j2e�E=2T=2�����

is its energy dependence associated with the Luttinger-
liquid correlations in the edges [28]. Here ��z� is the
gamma function and !c is the cutoff energy of the edge
excitations. The rates �j�E� can be used in the standard
kinetic equation to calculate the conductance of the antidot
system [20]. Anyonic statistics of quasiparticles affects the
position and amplitude of the conductance peaks through
the shift of the energy levels by quasiparticle tunneling
[described, e.g., by Eq. (6)] and through the kinetic effects
caused by the anyonic features in the matrix elements (8).
In the case of the antidot loop [Fig. 1(a)]; however, effects
of statistics are masked by the external AB flux ’ through
the loop. Since the area of practical antidots is much larger
than the internal area of the loop, ’ is essentially random
and cannot be controlled by external magnetic field on the
relevant scale of one period of conductance oscillations.
Below, we present the results for the similar case of a line
of antidots [Fig. 1(b)], the conductance of which is insen-
sitive to the AB flux and shows effects of statistics in the
tunneling matrix elements.

As before, the quasiparticle Hamiltonian is given by
Eq. (1). In this geometry, the interaction energy U1 

U1;0 � U0;�1 between the nearest-neighbor antidots is in
general different from the interaction U2 
 U1;�1 between
the quasiparticles at the ends. The localization energies on
the antidots can be written as �j � �� x�� 2�jxj. We
consider first the unbiased line, � � 0. At low tempera-
tures, T � �, U, only the ground states of n quasiparticles
with energies En participate in transport: E0 � 0, E1 �
�� ��!, E2 � 2�� 3�� �!� �Ua �Ub�=2, and
E3 � 3�� 2Ua �Ub � 4�, where ! � ��2

1 ��2
2 �

�2�1=2 and �! is given by the same expression with �
replaced by �� � �� �U1 �U2�=2. In this regime, the
linear conductance G consists of three peaks, with each
peak associated with addition of one more quasiparticle to
the antidots,

 G �
�e��2

T
�1�2

�1 � �2

anf��En�1 � En�
1� exp���En�1 � En�=T	

; (10)

where an 
 jhn� 1j�y0 jnij
2. The amplitudes a0, a2 are

effectively single particle, and thus, independent of
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the exchange statistics: a0 � �!� ��=2!, and a2 � � �!�
���=2 �!. By contrast, the amplitude a1 of the transition from
one to two quasiparticles is multiparticle and is found from
Eqs. (4) and (8) to be strongly statistics dependent,

 a1 �
�2

1�2
2

�!� ��!� �!� ��� �!
cos2���=2�: (11)

In particular, a1 vanishes for electron tunneling (� � 1),
but is nonvanishing in the case of fractional statistics, e.g.,
for � � 1=3, when cos2���=2� � 3=4. This is illustrated
in Fig. 3 which shows the conductance G obtained by
direct solution of the full kinetic equation for tunneling
through the antidots. Qualitatively, the vanishing ampli-
tude a1 for electrons can be understood as a result of
destructive interference between the two terms in the
two-particle wave function which correspond to different
ordering of the added/existing electron on the antidot line.
The opposite signs of these two terms lead to vanishing
overlap with the single-particle state in the tunnel matrix
element. Fractional statistics of quasiparticles makes this
destructive interference incomplete. Finite bias � � 0
along the line suppresses this interference making the
effect of the statistics smaller. One can still distinguish
the fractional statistics by looking at the dependence of the
amplitude of the middle peak of conductance on the bias �
shown in the right inset in Fig. 3.

In conclusion, we have developed a model of coherent
transport of anyonic quasiparticles in systems of multiple
antidots. In antidot loops, addition of individual quasipar-
ticles shifts the quasiparticle energy spectrum by adding
statistical flux to the loop. In the case without loops, energy
levels are insensitive to quasiparticle statistics, but the

statistics still manifests itself in the tunneling rates and
hence dc conductance of the antidot system.
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FIG. 3. Linear conductance G of the antidot line in a � � 1=3
FQHE liquid [Fig. 1(b)] as a function of the common antidot
energy � relative to the edges. In contrast to electrons (� � 1,
left inset), tunneling of quasiparticles with fractional exchange
statistics produces nonvanishing conductance peak associated
with transition between the ground states of one and two
quasiparticles. The maximum of this peak is shown in the right
inset (� � 1=3—solid line, � � 1—dashed line) as a function
of the bias �. The curves are plotted for �1 � �2, � � 0, �1 �
�2; conductance is normalized to G0 � �e��

2�1�0�=�1.
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