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We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM)
waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the
electron density response in the presence of the relativistic ponderomotive force and mass increase in the
CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled
nonlinear Schrödinger equations and Poisson’s equation. The nonlinear equations admit the modulational
instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of
localized CPEM wave pipes in the electron density hole that is associated with a positive potential
distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-
solid density plasma interaction experiments is discussed.
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Studies of collective interactions in dense quantum
plasmas is gaining momentum, although its foundation
was laid down by Pines [1], who discussed the properties
of electron plasma oscillations (EPOs) in a dense Fermi
plasma. The high-density, low-temperature quantum
Fermi plasma is significantly different from the low-
density, high-temperature ‘‘classical plasma’’ obeying the
Maxwell-Boltzmann distribution. In a very dense quantum
plasma, there are new equations of state [2–4] associated
with the Fermi-Dirac plasma particle distribution function
and there are new quantum forces involving the quantum
Bohm potential [5] and the electron-1=2 spin effect [6] due
to magnetization. It should be noted that very dense quan-
tum plasmas exist in intense laser-solid density plasma
interaction experiments [7–9], in laser-based inertial fu-
sion [10], in astrophysical and cosmological environments
[11–13], and in quantum diodes [14].

It has been recently recognized [15–17] that quantum
mechanical effects play an important role in intense laser-
solid density plasma interaction experiments. In the latter,
there are nonlinearities [18] associated with the electron
mass increase in the electromagnetic (EM) fields and the
modification of the electron number density by the relativ-
istic ponderomotive force. Relativistic nonlinear effects in
a classical plasma is very important, because they provide
the possibility of the compression and localization of in-
tense electromagnetic waves. In this Letter, we consider
nonlinear interactions between intense circularly polarized
electromagnetic (CPEM) waves and EPOs in dense quan-
tum plasmas, which are relevant for a variety of applica-
tions in laboratories [8,9]. Specifically, in the following, we
present theoretical and simulation studies of the CPEM
wave modulational instability against EPOs, as well as the
trapping of localized CPEM waves into a quantum electron
hole in very dense quantum plasmas.

We consider a one-dimensional geometry of an unmag-
netized dense electron-ion plasma, in which immobile ions
form the neutralizing background. Thus, we are investigat-
ing the phenomena on a time scale shorter than the ion
plasma period. Our dense quantum plasma contains an
intense CPEM plane wave that nonlinearly interacts with
EPOs. The nonlinear interaction between intense CPEM
waves and EPOs gives rise to an envelope of the CPEM
vector potential A? � A?�x̂� iŷ� exp��i!0t� ik0z�,
which obeys the nonlinear Schrödinger equation [19]
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where the electron wave function  and the scalar potential
are governed by, respectively,
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where �0 � !0=!pe, Vg � vg=c, H � @!pe=mc
2, vg �

k0c2=!0 is the group velocity of the CPEM waves, and
� � �1� jA?j

2�1=2 is the relativistic gamma factor due to
the electron quiver velocity in the CPEM wave fields.
Furthermore, !0 � �k2
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1=2 is the CPEM wave

frequency, k0 is the wave number, c is the speed of light
in vacuum, !pe � �4�n0e2=m�1=2 is the electron plasma
frequency, e is the magnitude of the electron charge, n0 is
the equilibrium electron number density, and m is the
electron rest mass. In (1)–(3) the time and space variables
are normalized by the inverse electron plasma frequency
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!�1
pe and skin depth �e � c=!pe, respectively, the scalar

potential � by mc2=e, the vector potential A? by mc2=e,
and the electron wave function  �z; t� by n1=2

0 . The non-
linear coupling between intense CPEM waves and EPOs
comes about due to the nonlinear current density, which is
represented by the term j j2A?=� in Eq. (1). The electron
number density is defined as ne �   � � j j2, where the
asterisk denotes the complex conjugate. In Eq. (2), 1� � is
the relativistic ponderomotive potential [19], which arises
due to the cross-coupling between the CPEM wave-
induced electron quiver velocity and the CPEM wave
magnetic field. The second term in the left-hand side in
(2) is associated with the quantum Bohm potential [5].

It is well known [19] that a relativistically strong elec-
tromagnetic wave in a classical electron plasma is sub-
jected to the Raman scattering and modulational
instabilities. At quantum scales, these instabilities will be
modified by the dispersive effects caused by the tunnelling
of the electrons. In order to investigate the quantum me-
chanical effects on the relativistic parametric instabilities
in a dense quantum plasma in the presence of a relativisti-
cally strong CPEM pump wave, we let ��z; t� � �1�z; t�,
A?�z; t� � �A0 � A1�z; t�� exp��i�0t� and  �z; t� �
�1�  1�z; t�� exp��i�0t�, where A0 is the large-amplitude
CPEM pump and A1 is the small-amplitude fluctuations of
the CPEM wave amplitude due to the nonlinear coupling
between CPEM waves and EPOs, i.e. jA1j 	 jA0j, and  1

�	 1� is the small-amplitude perturbations in the electron
wave function. The constant frequency shifts, determined
from Eqs. (1) and (2), are �0 � �1=�0 � 1�=�2�0� and
�0 � �1� �0�=H, where �0 � �1� jA0j

2�1=2. The first-
order perturbations in the electromagnetic vector potential
and the electron wave function are expanded into their
respective sidebands as A1�z; t� � A� exp�iKz� i�t� �
A� exp��iKz� i�t� and  1�z; t� �  � exp�iKz�
i�t� �  � exp��iKz� i�t�, while the potential is ex-
panded as ��z; t� � �̂ exp�iKz� i�t� � �̂� exp��iKz�
i�t�, where � and K are the frequency and wave number
of the electron plasma oscillations, respectively. Inserting
the above mentioned Fourier ansatz into Eqs. (1)–(3),
linearizing the resultant system of equations, and sorting
into equations for different Fourier modes, we obtain the
nonlinear dispersion relation
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where D
 � �2�0��� VgK� � K
2 and DL �

1�H2K4=4��2. We note that DL � 0 yields the linear
dispersion relation �2 � 1�H2K4=4 for the EPOs in a
dense quantum plasma [1]. ForH ! 0 we recover from (4)
the nonlinear dispersion relation for relativistically large-
amplitude electromagnetic waves in a classical electron
plasma [19]. The dispersion relation (4) governs the
Raman backward and forward scattering instabilities, as
well as the modulational instability. In the long-wavelength

limit Vg 	 1, �0 � 1 we introduce the ansatz � � i�,
where the normalized (by !pe) growth rate �	 1,
and obtain from Eq. (4) the growth rate � �
�1=2�jKjf�jA0j

2=�3
0��1� K

2=�1�H2K4=4�� � K2g1=2 of
the modulational instability. For jKj< 1 and H < 1, the
linear growth rate is only weakly depending on the quan-
tum parameter H. However, possible nonlinear saturation
of the modulational instability may lead to localized
CPEM wave packets, which are trapped in a quantum
electron hole. Such localized electromagnetic wave pack-
ets would have length scales much shorter than those
involved in the modulational instability process. Here
quantum diffraction effects (associated with the quantum
Bohm potential) become very important. In order to inves-
tigate the quantum diffraction effect on such localized
electromagnetic pulses, we consider a steady state struc-
ture moving with a constant speed Vg. Inserting the ansatz
A? � W��� exp��i�t�,  � P��� exp�ikx� i!t� and
� � ���� into Eqs. (1)–(3), where � � z� Vgt, k �
Vg=H, and ! � V2

g=2H, and where W��� and P��� are
real, we obtain from (1)–(3) the coupled system of equa-
tions
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with the boundary conditions W � � � 0 and P2 � 1 at
j�j � 1. In Eq. (5), � � 2�0� represents a nonlinear
frequency shift of the CPEM wave. In the limit H ! 0,
we have from (6) � � �� 1, where P � 0, and we re-
cover the classical (nonquantum) case of the relativistic
solitary waves in a cold plasma [20]. We note that the
system of Eqs. (5)–(7) admits a Hamiltonian
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where we have used the boundary conditions @=@� � 0,
W � � � 0, and jPj � 1 at j�j � 1.

In order to asses the importance of our investigation, we
now present numerical solutions of (1)–(3) and (5)–(7),
ensuring that (8) is conserved. We chose parameters that
are representative of the next generation laser-based
plasma compression (LBPC) schemes [9,10]. The formula
[18] eA?=mc2 � 6 10�10�s

���
I
p

will determine the nor-
malized vector potential, provided that the CPEM wave-
length �s (in microns) and intensity I (in W=cm2) are
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known. It is expected that in LBPC schemes, the electron
number density n0 may reach 1027 cm�3 and beyond, and
the peak values of eA?=mc2 may be in the range 1–2 (e.g.,
for focused EM pulses with �s � 0:15 nm and I � 5
1027 W=cm2). For !pe � 1:76 1018 s�1, we have
@!pe � 1:76 10�9 erg and H � 0:002, since mc2 �

8:1 10�7 erg. The electron skin depth �e � 1:7 �A. On
the other hand, a higher value ofH � 0:007 is achieved for
!pe � 5:64 1018 s�1. Thus, our numerical solutions be-
low, based on these two values of H, have focused on
scenarios that are relevant for the next generation intense
laser-solid density plasma interaction experiments [9].

We first numerically solved Eqs. (5)–(7) for several
values of H. Here, we solved the nonlinear boundary value
problem with the boundary conditions W � � � 0 and
P � 1 at the boundaries at � � 
10. We used centered
second-order approximations for the second derivatives
and solved the obtained nonlinear system of equations
numerically by using the Newton method. The results are
displayed in Figs. 1 and 2. We see that the solitary envelope
pulse is composed of a single maximum of the localized
vector potential W and a local depletion of the electron
density P2, and a localized positive potential � at the
center of the solitary pulse. The latter has a continuous
spectrum in �, where larger values of negative � are
associated with larger amplitude solitary EM pulses. At
the center of the solitary EM pulse, the electron density is
partially depleted, as in panels (a) of Fig. 1, and for larger
amplitudes of the EM waves we have stronger depletion of
the electron density, as shown in panels (b) and (c) of
Fig. 1. For cases where the electron density goes to almost
zero in the classical case [20], one important quantum
effect is that the electrons can tunnel into the depleted

region. This is seen in Fig. 2, where the electron density
remains nonzero for the larger value of H in panels (a),
while the density shrinks to zero for the smaller value of H
in panel (b).

In order to investigate the quantum diffraction effects on
the dynamics of localized CPEM wave packets, we have
solved the system of Eqs. (1)–(3) numerically. We consid-
ered the long-wavelength limit !0 � 1 and Vg � 0. In the
initial conditions, we use an EM pump with a constant
amplitude A? � A0 � 1 and a uniform plasma density
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FIG. 1 (color online). The profiles of the CPEM vector poten-
tial A?, the electron number density, and the scalar potential
(upper to lower rows of panels) for � � �0:3, � � �3:4, and
� � �0:4, with H � 0:002.
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FIG. 2 (color online). The profiles of the CPEM vector poten-
tial A?, the electron number density, and the scalar potential
(upper to lower rows of panels) for H � 0:007 and H � 0:002,
with � � �0:34.

FIG. 3 (color online). The dynamics of the CPEM vector
potential A? and the electron number density j j2 (upper panels)
and of the electrostatic potential � (lower panel) for H � 0:002.
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 � 1. A small-amplitude noise (random numbers) of
order 10�2 is added to A? to give a seed for any instability.
The numerical results are displayed in Figs. 3 and 4 for
H � 0:002 and H � 0:007, respectively. In both cases, we
see an initial linear growth phase and a wave collapse at
t � 70, in which almost all the CPEM wave energy is
contracted into a few well-separated localized CPEM
wave pipes. These are characterized by a large bell-shaped
amplitude of the CPEM wave, an almost complete deple-
tion of the electron number density at the center of the
CPEM wave packet, and a large-amplitude positive elec-
trostatic potential. Comparing Fig. 3 with Fig. 4, we see
that there is a more complex dynamics in the interaction
between the CPEM wave packets for the largerH � 0:007,
shown in Fig. 4, in comparison with H � 0:002, shown in
Fig. 3, where the wave packets are almost stationary when
they are fully developed. We have here neglected the
effects of the ion dynamics. The latter may be important
for the development of expanding plasma bubbles (cav-
ities) on longer time scales (e.g., the ion plasma period)
[21].

In conclusion, we have presented theoretical and com-
puter simulation studies of nonlinearly interacting intense
CPEM waves and EPOs in very dense quantum plasmas.
Specifically, we have identified a new modulational insta-
bility of an arbitrary large-amplitude CPEM due to the
quantum diffraction effect that is controlled by the parame-

ter H. Our simulation results reveal that the parameter H
plays a crucial role in the formation of localized intense
CPEM pulses, which are trapped in a quantum electron
hole at nanoscales. The localized CPEM wave structures,
as discussed here, may be useful for information transfer as
well as for electron acceleration in dense quantum plasmas,
such as those in the next generation intense laser-solid
density plasma interaction experiments.
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