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Berry phases and the quantum-information theoretic notion of fidelity have been recently used to
analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two
approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor
over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum
geometric tensor in the vicinity of the critical points. In this way most of the previous results are
understood on general grounds and new ones are found. We show that criticality is not a sufficient
condition to ensure superextensive divergence of the geometric tensor, and state the conditions under
which this is possible. The validity of this analysis is further checked by exact diagonalization of the
spin-1=2 XXZ Heisenberg chain.
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Introduction.—Phase transitions at zero temperature are
dramatic changes in the ground-state (GS) properties of a
system driven by quantum fluctuations. This phenomenon,
known as quantum phase transition (QPT), is due to
the interplay between different orderings associated with
the competing terms in the system’s Hamiltonian [1].
Traditionally such a problem is addressed by resorting to
notions like order parameter and symmetry breaking, i.e.,
the Landau-Ginzburg paradigm [2]. In the last few years a
big effort has been devoted to the analysis of QPTs from
the perspective of quantum information [3], the main tool
being the study of different entanglement measures [4].

More recently an approach to QPTs based on the
quantum-information concept of fidelity has been put for-
ward [5,6]. The strategy there is differential-geometric and
information-theoretic in nature: GSs associated to infini-
tesimally close parameters are compared; i.e., their overlap
is evaluated. The intuition behind this is extremely simple:
at QPTs, even the slightest move results in a major differ-
ence in some of the system’s observables, in turn this has to
show up in the degree of orthogonality, i.e., fidelity be-
tween the corresponding GSs. Systems of quasifree fermi-
ons have been analyzed [7,8] as well as QPTs in matrix-
product states [9]. Finite-temperature extensions have also
been considered, showing the robustness of the approach
against mixing with low excited states [10]. Remarkably,
the fidelity analysis has been successfully carried over for
the superfluid-insulator transition of the Hubbard model
[11]; this suggests that this framework, besides its concep-
tual appeal, can have some practical relevance even for
fully interacting systems where a simple description is not
possible.

In Ref. [12] it has been shown that the fidelity approach
can be better understood in terms of a Riemannian metric
tensor g defined over the parameter manifold M. Loosely
speaking the singularities developed by g in the thermody-
namic limit correspond to QPTs [12]. Even for finite-size

systems, critical points have a markedly distinct (finite-size
scaling) behavior from the regular ones; in all the examples
studied so far this difference amounts to an enhanced
orthogonalization ratio as a function of the system’s size
at the QPTs. Another intriguing relation between QPTs and
geometrical objects, i.e., Berry phases, was suggested in
Refs. [13,14]. There it was argued that loops in the pa-
rameter space, encircling a critical line give rise to a non-
zero GS Berry phase even for an arbitrary small loop size.
This fact indicates that at the critical points the curvature of
the Berry connection should display some sort of singu-
larity [14].

In this Letter we shall show that these two approaches
share the same origin and can be therefore unified. We will
perform a scaling analysis that allows one to understand,
from a single perspective, most of the results obtained so
far in the fidelity approach and to investigate somewhat
unexpected new ones.

Geometric tensors.—We now lay down the formal set-
ting. For each element � of the parameter manifold M
there is an associated quantum Hamiltonian H��� �PdimH�1
n�0 En���j�n���ih�n���j, (En�1 � En) acting over

a finite-dimensional state-space H ; the mapping �!
H��� is assumed to be smooth. If j�0���i denotes the
unique GS of H��� then one has the mapping �0 : M!
H : �! j�0���i. More properly we will consider this
map as a function valued in the projective space PH of
rays. If the spectral gap of H��� above the GS is bounded
away from zero over M then �0 is smooth [15]. The
projective Hilbert space is the base manifold of a U�1�
fiber bundle [16] and it is equipped with a complex metric
given by g�u; v� � hu; �1� j�ih�j�vi (u and v denote
tangent vectors in j�ih�j). Pulling this metric back to
M by �0, i.e., evaluating it on vectors of the form
d=dt�0���t��, one obtains the complex Hermitian tensor

 Q�� :� h@��0j@��0i � h@��0j�0ih�0j@��0i: (1)
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Here the indices � and � are labeling the coordinates of
M, i.e., �, � � 1; . . . ; dimM. This quantity is the quan-
tum geometric tensor (QGT) [17], both its real and imagi-
nary parts have a relevant physical meaning.

The real part g�� :� <Q�� is a Riemannian (real)
metric tensor over M which defines the line element as
ds2 �

P
��g��d��d��. This metric has been shown to

provide the leading term in the expansion of the fidelity
between two GSs associated to slightly different
Hamiltonians [12]. More precisely if F ��; �0� :�
jh�0���;�0��0�ij is the fidelity then F ��; �� ��� 	 1�
��2=2g�d�0; d�0� � 1� ds2=2 [i.e., g�� is the Hessian
matrix of F ��; �0� as a function of �0 in � � �0]. The
meaning of this distance function between parameters
should be obvious: it is the Hilbert-space one between
the corresponding GSs. This latter quantifies the opera-
tional distinguishability of two states [18]; therefore, even
the induced metric g conveys a definite information-
theoretic meaning [12]. The fact that at the QPTs g exhibits
singularities is consistent with the intuition that at critical
points one has a major change in the GS structure, i.e., it
becomes ‘‘more different’’, and makes it quantitative. Now
we consider the imaginary part of (1) F�� :� =Q��.
Since the terms h�j@��i are—from normalization—
purely imaginary, one finds =Q�� � =h@��j@��i �
h@��j@��i � h@��j@��i � @�A� � @�A�, where
A� :� h�j@��i is, for j�i � j�0���i, the Berry adiabatic
connection [19]. From this one sees that =Q�� is nothing
but the curvature 2-form, responsible for the appearance of
the Berry geometrical phase [19]. Of course for systems
with real GS F is zero and the QGT coincides with its real
part g.

The QGT (1) can be cast in a way useful for later
derivations as well as to decrypt its physical meaning. By
inserting in Eq. (1) the spectral resolution 1 �PdimH�1
n�0 j�n���ih�n���j and differentiating the eigen-

value equation H���j�0���i � E0���j�0���i, one finds
the identity

 Q�� �
X
n�0

h�0���j@�Hj�n���ih�n���j@�Hj�0���i

�En����E0����
2 : (2)

This expression clearly suggests that at the critical points,
where one of the "n��c� � En��c� � E0��c� � 0 vanishes
in the thermodynamic limit, the QGT might show a sin-
gular behavior. This heuristic argument is the same one
proposed in [12] for the Riemannian tensor g�� and for the
Berry curvature F�� in [14]. One of the aims of this Letter
is to establish this argument on more firm grounds. A
similar scaling analysis in connection with local measures
of entanglement at QPTs has been presented in [20].

We would like first to demonstrate an inequality useful
to establish a connection between the tensor g and QPTs.
We consider a system with size Ld (d is the spatial dimen-
sion). Since Q��� is a Hermitean non-negative matrix one
has jQ��j 
 jjQjj1 � h�jQj�i, where j�i � ����

dimM
��1

denotes the eigenvector of Q corresponding to the largest
eigenvalue. We set �H �

P
��@�H���, then from Eq. (2)

and the above inequality
 

jQ��j 

X
n>0

"�2
n jh�0j�Hj�nij

2 
 "�2
1

X
n>0

jh�0j�Hj�nij
2

� "�2
1 �h�H�H

yi � jh�Hij2�; (3)

where the angular brackets denote the average over
j�0���i. Now we assume that the operator �H is a local
one, i.e., �H �

P
j�Vj; then the last term in Eq. (3) readsP

i;j�h�Vi�V
y
j i � h�Viih�V

y
j i�. If the GS is translationally

invariant this last quantity can be written as Ld
P
rK�r� :�

LdK, where K�r� :� h�Vi�V
y
i�ri � h�Viih�V

y
i�ri is inde-

pendent of i. For gapped systems, i.e., "1�1� :�
limL!1"1�L�> 0, the correlation function G�r� is rapidly
decaying [21] and therefore K is finite and independent
on the system size. Using (3), it follows that for
these noncritical systems jQ��j cannot grow, as a function
of L, more than extensively. Indeed, one has that
limL!1jQ��j=L

d 
 K"�2
1 �1�<1. Conversely, if

limL!1jQ��j=Ld � 1, i.e., jQ��j grows superextensively,
then either "1�L� ! 0 or K cannot be finite. In both cases
the system has to be gapless [22]. Summarizing: a super-
extensive behavior of any of the components of Q for
systems with local interaction implies a vanishing gap in
the thermodynamic limit.

This sort of behavior has been observed in all the sys-
tems analyzed in Refs. [5–9] and does amount to the
critical fidelity drop at the QPTs. As we will show in the
next section, in general the converse result, i.e., QPT!
superextensive growth of ds2�L�, does not hold true:
Q��=Ld can be finite in the thermodynamic limit even
for gapless systems. In order to demonstrate this fact we
now move to a representation of Q�� in terms of suitable
correlation functions. This key move is an extension of the
results of You, Li, and Gu [23], for the so-called fidelity
susceptibility, to the whole QGT.

Correlation function representation.—Let us consider
the following imaginary time (connected) correlation func-
tions

 G����� � �����h@�H���@�H�0�i � h@�H�0�ih@�H�0�i�;

(4)

where X��� :� e�HXe��H. Using again the spectral reso-
lution of the identity associated to H��� one finds
G����� � ����

P
n>0e

�"n����Xn�X�n�, where Xn� :�
h�0���j@�Hj�n���i. Notice that if H��� � H0 � �V
then G��� is nothing but the dynamic response function
associated to the ‘‘perturbation’’ V. We now move to the
frequency domain ~G���!� �

R
�1
�1 d�e

�i!�G����� �P
n>0Xn�X

�
n��i!� "n��1. By comparing this equation

with (2) it is immediate to see that

 Q�� � �i
d
d!

~G���!�j!�0 �
Z �1
�1

d��G�����: (5)

This equation is an integral representation of the QGT in
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terms of the (imaginary time) correlation functions of the
operators @�H. Equation (4) is remarkable in that it con-
nect the tensors g�� and F�� directly (and nonperturba-
tively) to the dynamical response of the system to the
interactions @�H’s. In this way geometrical and
information-theoretic objects F and g are expressed in
terms of standard quantities in response theory and their
physics content is so further clarified. Equations (4) and (5)
provide the starting point for our scaling analysis.

Scaling behavior.—First we assume that the operators
@�H are local ones, i.e., @�H �

P
xV��x�. We also rescale

the QGT (1) by the system size Q�� ! q�� � L�dQ�� in
order to obtain well-defined quantities in the thermody-
namic limit. Now we consider the scaling transformations
x! �x, �! �	�, (� 2 R�). Assuming that, in the vi-
cinity of the critical point �c, the operators V� have well-
defined scaling dimensions [24] one has V� ! ����V�;
these relations along with Eqs. (4) and (5) imply

 q�� ! ���Q
��q��; �Q

�� :� �� � �� � 2	 � d: (6)

For simplicity we assume now that there is only one
driving parameter � and drop the indices � and � in �Q

��.
If 
 is the correlation length one has 
 � j�� �cj��

(here � is the correlation length critical exponent) and, if
�� is the scaling dimension of the driving parameter �,
� � ��1

� . Putting all this together and following standard
arguments in scaling analysis one obtains that (in the off-
critical region, L� 
) the singular part of the—inten-
sive—QGT behaves as

 q���� 	 �c�  j�� �cj
�Q=�� : (7)

Instead, at the critical point, i.e., 
 � 1, where the only
length scale is provided by the system size itself, one gets

 q���� � �c�  L��Q: (8)

Equations (7) and (8) represent the main result of this
Letter. From Eq. (7) one sees that close to the critical point
the QGT q�� is diverging for �Q=�� < 0; on the other
hand, when one is sitting exactly at the critical point one
finds that, besides an extensive contribution coming from
the regular part, the singular part contributes to Q��

in a manner which is (i) superextensive if �Q < 0,
(ii) extensive if �Q � 0, and (iii) subextensive for �Q >
0. Hence, we observe that q�� can be finite at the critical
point, even in a gapless system, provided �Q > 0. An
explicit example of this phenomenon will be discussed in
the sequel; before doing that we show that this analysis
allows one to understand in a unified manner the results
found for quasifree fermionic models in [7,8]. In quasifree
fermionic models the most relevant operator admissible
has a scaling dimension equal to one; therefore, from
Eqs. (7) and (8) one finds, close to �c, Q�� � g�� 
Lj�� �cj�1 and Q��  L2 at the QPT. Notice that if
�Q <�1 one expects superquadratic behavior.
XXZ chain.—We provide now a further test for the ideas

presented in this Letter: the S � 1=2 XXZ Heisenberg

chain. The model is defined by H � J
P
i�S

x
i S

x
i�1 �

Syi S
y
i�1 � �S

z
iS
z
i�1�. It is well known (see, e.g., [25]) that

in the regime � 2 ��1; 1� the model is in the universality
class of a c � 1 conformal field theory (d � 	 � 1) dis-
playing gapless excitations and power low correlations. For
� > 1 the model enters a phase with Ising-like antiferro-
magnetic order and a nonzero gap. Finally, the isotropic
point � � 1 is a Berezinskii-Kosterlitz-Thouless transition
point. The low energy effective continuum theory is given
by the sine-Gordon model: H �

R
d2xfu2 ��

2 � �@x��
2� �

v�
�a��2 cos�

�������������
16�K
p

��g, where v is the bare Fermi velocity, u

the renormalized one, K is related to the compactification
radius of the field �, and a is the lattice spacing (we use the
notations of [25]).

We now analyze the behavior of the fidelity when the
anisotropy parameter � is varied. Correspondingly, we are
interested in the operator V�x� � SzxS

z
x�1 and its scaling

exponents. In the continuum limit the operator V�x� con-
tributes with a marginal operator—�@x��2—with scaling
exponent �V � 2, plus a term which is precisely the cosine
in the sine-Gordon Hamiltonian. The cosine term is irrele-
vant for j�j< 1, marginal at � � 1 and relevant for � > 1,
where it is responsible for the opening of a mass gap. Its
scaling dimension is precisely equal to 4K. The parameter
K can be fixed by the long distance asymptotic of the
correlation functions obtained by Bethe ansatz, and one
gets, for � 2 ��1; 1� K � �=2��� arccos�����1.
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FIG. 1 (color online). Scaling behavior of metric g. The points
are the data obtained via Lanczos diagonalization of periodic
chains of length L up to 26, using equation F ��; �� ��� 	
1� g��2=2 with �� � 1:0� 10�3. The points at j�j< 1 are
well fitted (solid lines) with g=L � A1 � A2L

�1 � A3L
3�2��2�V .

The contribution A3 comes from the irrelevant operator with
scaling dimension ��2�V � 4K. As this operator becomes rapidly
irrelevant for j�j< 1, its contribution can be hardly observed. At
� � 1 a better a fit is obtained with logarithmic corrections as
expected at the isotropic point. In the massive regime we expect
that the thermodynamic limit is approached exponentially fast.
We obtain a good agreement by fitting our data with the
phenomenological formula g=L � A1 � A2e

�L=
L�1=2, where

 is the correlation length as given by the Bethe ansatz [26].
As 
�� � 2� � 8:35 . . . we used only points with L � 14.
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When one considers the finite-size scaling of q in the
gapless region j�j< 1, the leading contribution is dictated
by the most relevant component of V�x� which in this case
is the marginal one, i.e., �V � 2. Correspondingly, using
Eq. (8) we obtain �Q � 1, so that, in the whole region
j�j< 1, the finite-size dependence of the (rescaled) QGT
tensor is q � A1 � A2L

�1, where A1;2 are constants which
depend only on �. Note that the term A1 is the contribution
coming from the regular part. This kind of scaling has to be
contrasted with the one observed in quasifree fermionic
systems, where one has q � A01 � A

0
2L. We would like to

stress again that in general one expects a superextensive
behavior ofQ, and a corresponding fidelity drop when d�
2	 � 2�V > 0, i.e., when the operator associated to the
varying parameter is sufficiently relevant. When this con-
dition is not fulfilled the rescaled QGT tensor does not
diverge in the thermodynamic limit at critical points.
Nevertheless, a proper finite-size scaling analysis allows
one to identify the critical region. To check this latter
feature as well as the predicted scaling behavior we have
performed exact Lanczos diagonalizations. The agreement
between numerical data and the theoretical prediction is
shown in Fig. 1.

Conclusions.—The mapping between a quantum
Hamiltonian and the corresponding ground state endows
the parameter manifold with a complex tensor Q. The real
part of Q is a Riemannian metric g, while the imaginary
part is the curvature form giving rise to a Berry phase. The
metric tensor g is closely related to the quantum fidelity
between different ground states; in the thermodynamical
limit it has been shown to be singular at the critical point
for several models featuring quantum phase transitions,
e.g., quasifree fermionic models. The same kind of singu-
larity has been argued to exist for the form F and the
associated Berry phases as well. In this Letter we demon-
strated that (i) the components Q�� of Q have an integral
representation in terms of response functions (ii) a super-
extensive behavior of any of the Q��’s implies, for local
models, gaplessness (iii) the singular part of the Q��

fulfills scaling relations which explicitly connect their
singular behavior with the universality class of the transi-
tion, i.e., critical exponents. In particular, these relations
show that gaplessness is a necessary but not sufficient
condition for a superextensive scaling of the metric tensor,
i.e., enhanced orthogonalization rate. The theoretical
analysis has been further supported by a numerical study
of the finite-size scaling of the fidelity for the XXZ spin
1=2 chain. The main message of this Letter is that appar-
ently unrelated results can be understood in unified fashion
by unveiling the underlying common differential-
geometric structure and analyzing its quantum-critical
behavior.
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