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A novel phase-field approach is developed for quantitative modeling of the complex thermophysics
over reduced length scales in narrow fluidic confinements, as induced by the surface roughness-
hydrophobicity coupling and the consequent hydrodynamic interactions. The method is tested for flows
on micro- and nano- corrugated surfaces in narrow confinements, and the agreement with molecular
dynamics and lattice Boltzmann simulations is found to be quantitative.
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The physics of fluid-solid and fluid-fluid interactions in
micro- and nanochannels has given rise to many compli-
cated and unresolved apparent anomalies, primarily attrib-
utable to seemingly nontrivial dependences of the fluid
flow characteristics on the molecular level interaction
mechanisms and down-scaled topographical features of
the confining boundaries. On system length scales, these
details have often been abstracted with the notion of pre-
defined sets of hydrodynamic boundary conditions, typi-
cally postulated on the basis of either “no-slip’” or “slip”
based conceptual paradigms [1-7], with an intention of
mimicking the underlying molecular level interactions in
an up-scaled continuum limit. However, the hydrodynamic
interactions giving rise to these conjectures still remain to
be poorly understood, especially within the purview of
experimentally tractable spatiotemporal scales. This deficit
stems from the complexities in describing the underlying
thermofluidic interactions at physical scales that are sub-
stantially larger than those addressed in the pertinent mo-
lecular dynamics (MD) simulations.

Here what is proposed is believed to be the first complete
phase-field description of fluid dynamics in narrow con-
finements subjected to hydrodynamic interactions originat-
ing out of complex hydrophobic effects [8]. A logical
attempt is made to accommodate the implications of the
disparate physical scales responsible for the underlying
hydrodynamic interactions in a thermodynamically consis-
tent manner. Significances of the present formalism lie in
the fact that in a certain way, this provides an optimal
compromise between the needs for embedding the under-
lying complex thermophysics through standard continuum
based approaches that are unable to capture the disparate
physical scales directly, and the needs for accessing com-
putationally tractable as well as experimentally relevant
physical scales that are truly beyond the reach of MD
simulations. Notwithstanding their inherently mesoscopic
character, the distribution of the effective chemical poten-
tial being introduced in this model is expected to represent
no less physical content than its molecular-scale counter-
parts, reducing the requirements of an explicit capturing of
the pertinent molecular transport features through expen-
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sive MD simulations that are otherwise intractable for most
of the experimentally encountered physical scales.

Three distinctive and novel features are introduced into
the present model to achieve the above-mentioned feat, in
the context of micro- or nanoscale flows being subjected to
hydrophobic interactions. First, a direct relationship is
established between the effective contact angle and the
surface order parameter variation, where the surface value
of the order parameter automatically sets up the degree of
ordering or disordering at the channel walls. Second, the
features of hydrophobicity at small length scales are em-
bedded in the order parameter description by introducing a
modification in the chemical potential, which considers the
rapidly-varying small length scale fluctuations about the
slowly varying components of the order parameter and
thereby implicitly accounts for the molecular-scale details
of excluded volume regions over which the density varies
rapidly. Third, the modifications of the local molecular
fields due to the replacement of polar liquids by rigid walls
are also taken into account, which are likely to trigger off
separation-induced phase transition processes. With these
physical considerations, it is established that the physics of
hydrophobic interactions in microfluidic or nanofluidic
confinements can be quantitatively reproduced by the gen-
eralized order parameter model, by comparing with re-
cently reported MD simulations.

To emphasize the novel features of the present formal-
ism, it may be instructive to briefly revisit a general phase-
field framework, in which a liquid-vapor binary mixture
can be characterized by means of a phase-field order
parameter (effectively, a relative phase concentration dis-
tribution), ¢ = (n; — n,)/(n; + n,), where n; are the
number densities of the two species. The Ginzburg-
Landau free energy for a binary mixture can be expressed
in terms of a phase-field parameter as [9] F(¢) = [ [% X
(V)? + f(¢p)]d7 + ¥,. The double-well potential contri-
bution to f(¢) may be described as % (¢ — \/%)Z(QZS + \/%)2,
where ¢4 = i\/% are two stable solutions of the equilib-
rium order parameter profile. The interfacial thickness,

thus, is of the order of &, ~ \/§ (the mean-field correlation
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length). The chemical potential, u, can be defined as
w(d) = 5—F = f!(¢(7)) — kV?[(7)]. The equilibrium dis-

tribution of the order parameter [10], thus, can be obtained
by setting u(@) = 0. The dynamic evolution of the order
parameter is dictated by the Cahn-Hillard equation (advan-
tages of this approach in analyzing the dynamical evolution
of complex phase separatlng systems are detailed in [11]),
which can be written as + v Vq’) V- (MV,u) where
M is the mobility of the order parameter. At the walls, the
following zero-flux boundary conditions may be adopted:
- 6(1) =0, and 7 - M%,u = (0, where 7 is a unit vector
normal to the wall. The scales of the phase-field parameters
that are related to the corresponding physical parameters
are as follows: B, A ~ kT, and vkA ~ v,,, where T, is
the critical temperature and 7, is the liquid-vapor surface
energy. With the followmg choices of nondimensionalizing

parameters: ¢ — lzil?le’ ¢ — \/;, [— \/Z u—1/t, u—
B¢?, p— ”‘g_lek, where k = A§2 (w1th £ = €/VK), the

nondimensional forms of the coupled Cann-Hilliard/
Navier-Stokes equations (Model H [11]) become ¢’ +v-

V¢ = V2, and (& +ii-Vii) = D[~ vp+6 (Vi +
vul) + C,qu)] where D, = p— is the ratio of the mo-

mentum diffusivity and the diffusivity of the order parame-

— _né
ter, and C A Te

The above generic order parameter model description
remains far from being complete, with regard to its inher-
ent capability in capturing certain interesting aspects of
fluid dynamic interactions in narrow confinements, typi-
cally attributed to the complicated and nontrivial hydro-
phobic interaction mechanisms. Despite an emerging
consensus on some of the key features of such interactions,
it has been hard to reconcile the fundamental modalities of
interlinkage between the wettability conditions at the hy-
drodynamic scales, separation- and confinement-induced
hydrodynamic interactions, and an apparently unpredict-
able nucleation of tiny vapor bubbles, from the perspective
of conventional thermofluidic analysis. Notwithstanding
the underlying details, however, the interfacial free ener-
gies of the phase transition point can be described as vy, =
Q(d)s: _1) + Yo, Ysv = Q(lr ¢s) + Yo, Yiv = Q(l’ _1),
where O, ¢5) = [2[2kVf($)]°%, and @, is the local

surface value of the order parameter. Here the subscripts s,
[, and v refer to substrate, liquid, and vapor, respectively,
and ¢ is set in such a manner that ¢¢ = —1 represents the
liquid whereas ¢ = 1 represents the vapor phase. From the
above considerations, the contact angle at the wall can be
written as a function of the corresponding order parameter

as cosf,, = 7*‘% Yoo = 3¢: 4! The value of ¢, thus explic-

itly sets up the degree of ordering or disordering at the -
wall-fluid interface. Experimental perspectives of the
contact angle determination for such small-scale systems
are reported elsewhere [12].

The other parameters that are explicitly governed by the
local surface wettability conditions are the short-ranged

component of the wall-fluid interactions, which are con-
fined within a length scale that is comparable to the order
of & Accordingly, the interfacial free energy at the
substrate locations can be estimated by balancing the dis-
tortion energy with the fluid-solid interaction energy; the
distortion energy being distributed over a layer with thick-
ness of the same order of magnitude as that of the diffuse
interface. Such short-range wall-fluid interactions can be
represented by its corresponding surface potential as [9]
WV, = [[—he¢, — L gpI]dF, where the parameters / and g
are termed as the short-range surface field and the surface
enhancement, respectively. The parameter i physically
represents the preference of the substrate for either the
liquid or the vapor and is related to the contact angle as
[13] \/kZBh = 2sgn(w/2 — 6,,)[cos§ (1 — cos$)]*, where
a = cos” !(sind,,), and sgn(x) = sign of x. The parameter
g represents the “missing” liquid-liquid interactions due to
the fact that a near-wall liquid molecule has only a small
number of liquid neighbors, and its exact quantification is
detailed in [14]. The nucleation of nanobubble layers
adhering to the hydrophobic surfaces represents the non-
classical case of ordering of vapor molecules abutting the
wall, which represents the limiting case of ultra-short-
range fluid-solid interaction over liquid-vapor interfacial
length scales.

The above considerations for hydrophobic interactions,
by no means, present a complete physical picture, since all
interactions are not necessarily dictated by surface wett-
ability constraints. To obtain a more complete picture, the
contributions of excluded volume regions over which
small-scale fluctuations in the density are expected to
occur need to be aptly considered, which have so far not
been taken into account in the literature of order parameter
description for small-scale flows. As such, it is well known
that hydrophobic units are not thermodynamically favored
to form hydrogen bonds with water molecules. Hence,
these give rise to excluded volume regions encompassing
the locations characterized with rapidly diminishing num-
ber density of water molecules. Close to small hydrophobic
units, water molecules can structurally change and reor-
ganize without sacrificing their hydrogen bonds. However,
close to larger hydrophobic units, persistence of a hydro-
gen bond network is virtually impossible. A drying effect
[15], induced by the consequent energetic interactions,
might lead to strong attraction between two hydrophobic
surfaces. Further, loss of hydrogen bonds close to any such
hydrophobic surface effectively repels liquid molecules,
thereby favoring the formation of thin vapor layers. Such
small-scale density fluctuations can be assumed to follow
Gaussian statistics with a variance given as y(7, 7) =
(6 (7)6 (7). Hydrophobic interactions, in effect, ex-
clude water from specified volumes, and the resultant
solvation free energies are related to the probability of
finding these volumes as empty in unperturbed fluids.
This gives rise to an excess equivalent chemical potential,

—kBTln[%], where Z,(N) is the

iven as A =
g Meex o Z,(N)
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partition function for the case when N solvent molecules
occupy the volume v, and is given by [16] Z,(N) =
exp{—F(¢(7; N)/ksT — [N — [, did(7; N)F/20, —
(Ino,)/2}, and o, = [, d7 [, d¥ x(V, 7).

A third consequence of the small-scale hydrodynamic
interactions, as mentioned earlier, is that in confined fluids,
long-ranged interactions can also trigger separation-
induced phase transitions. Such separation-induced cavita-
tion physically originates from an increase in the local
molecular field due to the replacement of polarizable fluids
by solid walls. Physically, it is impossible for a hydrogen
bond network to persist close to a hydrophobic surface.
The underlying energetic effect may lead to drying, which
can lead to strong attractions between the separated sur-
faces. For instance, the loss of hydrogen bonds near the
hydrophobic surfaces effectively expels liquid water to
move away, thereby forming thin vapor layers. Such inter-
facial fluctuations can destabilize the liquid further away
from the solid walls, leading to a pressure imbalance. This
effectively gives rise to an attractive potential between the
two surfaces. The confinement effects, therefore, reduce
the chemical potential by an amount A p.,, Which, in the
mean-field approximation [17], is given by A, =
M[(? +2)7% + (& — 2)7%], where the confining walls
of the channel are given by z = 0 and z = H, respectively.
Here ¢ is the depth of the Lennard-Jones potential well and
o is the collision parameter.

The resultant chemical potential,pterr = s + Aptey —
A ptep, Obtained as a combined consequence of all the
effects mentioned as above, predicts the extent of hydro-
phobic interactions within the fluidic confinement, includ-
ing the inception of nanobubbles that occurs when the
driving force required to minimize the area of liquid-vapor
interface is smaller than the forces that pin the contact line
of the substrate. The consequent enhancement in concen-
trations of gas-filled submicrocavities close to the hydro-
phobic wall results in a deviation of the value of ¢ from its
value at the bulk liquid phase, as captured by the present
mathematical model. This, in turn, leads to a decrement in
viscosity near the wall (note that a higher value of ¢
implies a lower value of effective viscosity). With the
bulk phase viscosity still being employed for the contin-
uum fluid flow calculations; this decrement in effective
viscosity needs to be compensated with a consequent
enhancement in the local shear strain rate, in order to
achieve continuity in the shear stress (rate of momentum
transport), giving rise to “‘apparent slip” effects.

In order to assess the predictive capability of the present
model vis-a-vis the benchmark MD simulations [18], a
rectangular groove of depth H; and width H = L-a is
considered to be introduced at the bottom wall of a nano-
channel, as an artificially designed surface roughness ele-
ment, as shown in the inset of Fig. 1. Periodic boundary
conditions are considered with a periodicity of L. To render
the present simulation studies comparable with the other
reported studies [8,18], following simulation parameters
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FIG. 1 (color online). Normalized pressure drop between the
bulk phases, as a function of the normalized separation distance.
The bottom inset schematically represents the problem geome-
try. In the top inset a few equilibrium interface profiles are
shown. At high pressures, the liquid virtually occupies all spaces.
Transition from this normal state tends to first occur at d/I =
0.8. The bottommost curve in the top inset marks that transition.
The dashed line located above this curve is a subsequent snap-
shot of the interface at d/I = 0.9. The two curves at the top
(corresponding to d/l = 1 and d/I =~ 1.1, respectively) repre-
sent partially dewetted states at lower pressures, leading to the
formation of completely detached interfaces from the base of the
substrate. Such transitions from normal to superhydrophobic
states are also confirmed from the corresponding MD simula-
tions [18]. The equilibrium interfacial locations depicted in the
inset also compare well with the MD simulation predictions
(shown by markers in the inset), even to a quantitative extent.
The small-scale solvent fluctuations become significantly more
important as the distance of separation “d” is progressively
reduced, especially in the limit as d/o — 17. In the figure,
LBE represents simulation results obtained by solving the lattice
Boltzmann equations.

are considered: H, = 1070, L, =1890, L —a=
15.60. The presence of the groove triggers the formation
of a vapor film, at a critical pressure drop between the
liquid and the vapor phase that is of the order of the
capillary pressure (so that there is a reduction in Gibbs
free energy on formation of a superhydrophobic state from
the normal state), given by pe,, = % (Here v, is
taken as 0.022 N/m, which is in the tune of 18kzT [16],
approximately corresponding to a temperature of 540 °C
[8]). The other relevant parameters are taken as follows:
ML= 1 [17], &&= —t+ 5L [14], pyo® = 0.75 [17],
kBLT = B¢ where B =~ 230 kJ/cm®/mol®> and &~
0.38 nm [16]. The parameter A is estimated by noting
that kyB—“T ~ kA. The only fitting parameter, M, required

for coupling the phase field with the flow field, is set with a
consideration [19] that the Cahn number, C, is the ratio of
the interfacial thickness (&) and the characteristic length
scale of the surface perturbation or roughness element
(H,), based on which the value of M can be determined.
The variation of the normalized pressure drop between the
two bulk phases, as a function of d/L, is plotted in Fig. 1. It
can be observed from Fig. 1 that the results from the MD
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FIG. 2 (color online). Normalized slip length as a function of
Ap/ Deap- In the inset, the same is also depicted as a function of
the normalized separation distance. The triangular markers rep-
resent slip length values for smooth walls (i.e., H; — 0). The
simulation results correspond to a shear-induced flow by moving
the upper wall with a velocity U and the lower wall with a
velocity —U. The slip length, 8 (independent of U with typically
linear velocity profiles) is determined as the distance between
the wall position (bottom layer of the substrate) and the depth at
which the extrapolated velocity profile reaches the nominal wall
velocity, U. The inset shows that in the normal state (d/o < 1,
approximately), the slip length is found to be rather small
(roughness reduces slip), whereas in the superhydrophobic state
the slip length is substantially enhanced.

simulation [18], Lattice Boltzmann simulation [8] and the
present model are in excellent agreement, without neces-
sitating any additional fitting parameters. The lattice
Boltzmann model employed for this purpose is a minimal
discrete version of the Boltzmann equation with external
forcing terms being introduced to capture interparticle
interactions and exponentially decaying forcing functions
to mimic fluid-wall interactions [12]. In Fig. 1, the plateaus
in the pressure drop characteristics over the range 0.9 <
d/L < 1.1 represent the pressure and density states at
which the fluid invades the surface corrugation, thereby
forming an interface that does not touch the bottom of the
channel. With further reductions in d (implying increments
in the average density) over the range 0.8 < d/L < 0.9,
however, the interface tends to touch the bottom wall,
giving rise to an alteration in convexity of the characteristic
curve.

The simulation results are finally expressed in terms of
the variations in the normalized slip length (8), as a
function of Ap/ Peap> @S shown in Fig. 2, corresponding
to the situation of a parallel Couette flow. Following the
trend apparent in the inset of Fig. 2, the B versus Ap
characteristics depict a transition from normal to super-
hydrophobic behavior for 8/c > 1 (approximately). This
physically implies that close to the wall one can observe a
local phase transition that is triggered by the presence of
the groove. This generic and spontaneous phenomenon
leads to the formation of a gas layer in the vicinity, even-
tually resulting in the inception of a thermodynamic state

in which gas and liquid phases can independently coexist.
The incipient vapor layer formed on the solid surface and
dynamically segregated from the liquid phase tends to
augment the level of slippage. The vapor layer, in effect,
acts like a shield, preventing the liquid from being directly
exposed to the surface irregularities. In such cases, the
liquid is not likely to feel the presence of the wall directly
and may smoothly sail over the intervening vapor layers,
instead of being in proximate contact with the wall rough-
ness elements.

To summarize, a phase-field method is devised for
quantitative modeling of hydrophobic interactions in nar-
row fluidic devices in the presence of small-scale geomet-
rical irregularities. Such order parameter descriptions, in
principle, can also be applied to the equilibrium theory of
hydrophobic molecular solvation. While MD simulations
would otherwise be ideal to study such systems, they are
unfortunately unable to track most of the experimentally
accessible spatiotemporal length scales. A further advan-
tage of the present approach lies in the fact that the
computational constraints are much less severe than the
other equivalent methods, without necessitating the em-
ployment of several empirically fitted parameters.
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