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Dripping to Jetting Transitions in Coflowing Liquid Streams
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A liquid forced through an orifice into an immiscible fluid ultimately breaks into drops due to surface
tension. Drop formation can occur right at the orifice in a dripping process. Alternatively, the inner fluid
can form a jet, which breaks into drops further downstream. The transition from dripping to jetting is not
understood for coflowing fluid streams, unlike the case of drop formation in air. We show that in a
coflowing stream this transition can be characterized by a state diagram that depends on the capillary
number of the outer fluid and the Weber number of the inner fluid.
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A liquid forced through an orifice will ultimately break
into drops through one of two mechanisms. At slow flows,
the emerging liquid drips from the orifice, whereas at faster
flows, the liquid forms a thin stream that breaks into drops
away from the orifice; these are the dripping and jetting
regimes. This behavior is familiar to anyone who has
slowly increased the flow rate of water at a kitchen faucet.
In this case, dripping occurs at low flow rates where surface
tension causes the water to form drops at the tap; the
hanging drops detach when the gravitational force exceeds
surface tension forces. At higher flow rates jetting occurs
when the inertial forces of the water exceed surface tension
forces [1,2]. The dripping-to-jetting transition is sharp if
the liquid viscosity is large compared to water [2], whereas
the transition initially becomes chaotic [1,3—5] before jet-
ting for lower viscosity fluids. The jets eventually break
into drops due to the Rayleigh-Plateau instability [6,7].

While both dripping and jetting must occur when a
liquid is injected in a second immiscible liquid [8-10],
the mechanism of droplet formation changes due to the
presence of the surrounding viscous liquid [11-14]. Drop
formation has rich dynamics [15,16] that are affected by
many parameters such as the average velocities of both
liquids, their viscosities and densities, surface tension, and
the surface chemistry and device geometry [17]. Two-
phase drop formation is important to applications in micro-
fluidics [18,19] such as flow focusing [15,20] and in liquid-
gas systems [21], selective withdrawal for coating particles
[22], and extrusion emulsification [23]. Because of its
importance, drop formation in two fluids has been widely
studied [8-10,24,25]; however, complete control over the
two-phase flow behavior requires a detailed understanding
of the dripping-to-jetting transition, and a unified view of
this transition is still lacking [26].

In this Letter, we use a microcapillary device to study
the transition between dripping and jetting in a two-phase
coflowing stream. The behavior is characterized by a state
diagram that depends on both the capillary number of the
outer fluid, C,,, and the Weber number of the inner fluid,
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W,,; these parameters describe, respectively, the magni-
tude of the viscous shear forces from the outer liquid and
the inertial forces from the inner liquid compared to sur-
face tension forces. We observe two distinct jetting re-
gimes with significant differences in jet shape and the
mechanism controlling drop size.

Our experimental device is made of two coaxially
aligned capillary tubes. The inner capillary tube is cylin-
drical, with a tip tapered to an inner diameter of d, =~
20 pm and an outer diameter of 30 wm. The outer capil-
lary tube is square; coaxial alignment of the tubes is
achieved by matching the outer diameter of the untapered
portion of the inner capillary to the inner dimension of the
square capillary, D = 1 mm, as shown in Fig. 1(a). At this
length scale, which is below the capillary length, the
effects of gravity are negligible. Although the flow in the
square tube is not axisymmetric, since the tip is centered
and d;,/D = 0.02, the local flow around the tip should be
approximately axisymmetric. For experiments requiring a
larger velocity of the outer fluid, we place a second cylin-
drical capillary with inner diameter of 200 xm inside the
outer square capillary, surrounding the tip; since this extra
capillary has a smaller cross section than the square one,
the outer fluid achieves a higher average velocity. Although
the surrounding walls are closer in this case, the jet diame-
teris = dy,, and d,;,/D = 0.1; thus, we expect wall effects
to be small. We use deionized water and different viscosity
polydimethylsiloxane (PDMS) oils; interchanging the oil
and water enables us to vary the viscosity ratio, 7i,/Jout
from 0.01 to 10, where 7;, and 7, are the viscosities of
the inner and outer fluids, respectively. The surface tension
between PDMS oil and water can be lowered from 40 to
4 mN/m by adding 60 mM sodium dodecyl sulfate (SDS)
to the water. This high concentration of SDS reduces
surface tension gradients across the jets.

In coflowing fluids, dripping occurs at low flow rates of
both fluids and is characterized by the periodic formation
of individual drops that pinch-off from the tip [Fig. 1(b)].
We observe two distinct classes of transitions from drip-
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FIG. 1. (a) Device geometry showing the tapered inner capil-
lary in the outer square capillary. (b) Image of the dripping
regime. (c) Image of a narrowing jet generated by increasing g
above a threshold while keeping g;, constant, with 7;,/ou =
0.1. (d) Image of a widening jet generated by increasing g¢;,
above a threshold while keeping g, constant, with 7,/ =
0.1. Images (b)—(d) were taken with a high-speed camera (walls
not shown). Scale bar applies to (b)—(d).

ping to jetting. The first is driven by the flow rate of the
outer fluid; as it is increased, drops formed at the tip
decrease in size until a jet is formed, whereupon drop
breakup occurs downstream at the end of the thin jet
[Fig. 1(c)]. The second class of transition is driven by the
flow rate of the inner fluid; as it is increased, the dripping
drop is pushed downstream and is ultimately pinched off at
the end of the resultant jet [Fig. 1(d)].

The first class of dripping-to-jetting transition is charac-
terized by a jet that thins as it moves downstream. In the
dripping regime, the diameter of the drop first decreases as
the flow rate of the outer liquid, g, increases. When the
drop diameter becomes approximately equal to dy,, there
is a spontaneous transition to jetting. The diameter of the
jet decreases with distance downstream but ultimately
reaches a constant value as shown in Fig. 1(c). Still farther
downstream, the jet develops undulations driven by the
Rayleigh-Plateau instability; these grow larger and ulti-
mately drive the formation of drops whose diameter is
only slightly larger than that of the cylindrical jet itself.
In this regime, it is the viscous drag from the flow of the
outer fluid that drives drop formation. In the dripping
regime, the growing droplet experiences two competing
forces: viscous drag pulling it downstream and forces due
to surface tension holding it to the tip. Initially, surface
tension dominates but the drag forces eventually become
comparable as the droplet grows. This force balance is
given by: Moyloudarop ~ Ydiips Where ugy, is the mean
velocity of the outer liquid and vy is the surface tension

[27]. The diameter of the detaching drop decreases as ¢y
increases; ultimately, a critical shear stress is reached
where the emerging liquid is stretched into a narrowing
jet [Fig. 1(c)]. The diameter of this jet is initially equal to
dy;p, and decreases as the liquid moves downstream until the
stress gradient across the jet relaxes. This is similar to flow
focusing in microfluidic devices [15,20] and in model
calculations [28].

We measure the final downstream diameter of the jets
and resulting drops from high-speed movies. We compare
these data to calculations of the steady-state diameter of
the jet, djy, obtained by solving for the motion of two
coaxially flowing liquids with constant shape under Stokes
flow: V2u = Vp, where p is the pressure. By relating the
mean velocities of both fluids to the flow rates, we obtain a
function [29] where the dominant term is gi,/Gou =
2(djet/D)?. Solving for di/D, we obtain the scaled jet
diameter as a function of the flow rate ratio. This relation
(solid line) agrees well with the measured jet diameters, as
shown in Fig. 2.

We can also calculate the drop diameter by assuming
that it is related to dj,. For static fluid cylinders suspended
in another immiscible liquid, the wavelength of the fastest
growing mode of the Rayleigh-Plateau instability is pro-
portional to the diameter of the cylinder itself [30]. In turn,
the volume contained in one wavelength of this mode, A,
on the cylinder, dezet/\/ 4, is approximately equal to the
volume of the drop that is formed when the cylinder
breaks. The most unstable mode is a function of viscosity
ratio; in this experiment, 7,/ 7o, = 0.1 and A = 5.48d,,
[30]. We solve for dg;, as a function of dj., assuming that
this argument applies for nearly uniformly translating jets,
giving dgop, = 2dje. The calculated results (dotted line)
agree very well with the measured drop sizes, as shown in
Fig. 2.
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FIG. 2 (color online). Experimentally measured dj., (A) and
drop (@) scaled by D as a function of g;, /qout Tor the narrowing
jets with i,/ moue = 0.1. The solid line is the prediction from the
model for dj,; with no fitting parameters. The dashed line is the
predicted result assuming dg, = 2d;; from the Rayleigh-
Plateau instability as described in the text. The inner and outer
Reynolds numbers, R;, = @ and R, = %, vary

out

from ~7-70 and ~15-50, respé::tively.
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The second dripping-to-jetting transition is character-
ized by a dramatically different shape; the jet diameter
increases along its length instead of decreasing [Fig. 1(d)].
In this case, the transition from dripping to jetting is no
longer sudden; instead, there is an intermediate dripping
regime as g;, increases where the growing droplets move
downstream while still connected to the fluid in the tip
through a fluid neck. However, as soon as the drop pinches
off, the neck retracts completely back to the tip, whereupon
the process repeats itself. As g;, is increased still further,
this intermediate regime transitions fully into jetting,
where we define jetting as the incomplete retraction of
the fluid neck. The jet ultimately develops undulations
that lead to drop formation.

This second class of dripping-to-jetting transition is
controlled by different forces and thus exhibits different
behavior. The control parameter ¢;, does not affect drop
size in the dripping regime; instead drop size depends on
the viscous drag, which depends on g,. Since g, is held
constant, g;, affects how quickly the droplets reach the
critical size where the viscous drag and surface tension
forces balance each other. However, g;, is proportional to
the momentum of the inner fluid, which acts cooperatively
with the viscous drag from the outer fluid to drive the
transition to the intermediate regime, where the droplet
moves downstream, though still connected to the fluid in
the tip through a fluid neck. After the drop pinches off,
surface tension pulls the neck completely back into the tip.
At even larger g;,, the inertia of the injected inner liquid
becomes sufficiently large that the position of drop growth
and pinch off is pushed away from the tip; the large inertial
forces within the jet prevent the fluid neck from retracting
completely back to the tip after drop pinch off. There is,
however, a slight retraction at the end of the jet due to
surface tension, which causes the end to become spherical
and move slightly upstream. Viscous drag from the outer
fluid then pulls the growing droplet downstream beginning
the process again. The significant shape differences be-
tween these jets and the thinning jets [see Figs. 1(c) and
1(d)] are due to the large velocity difference between the
inner and outer liquids. For widening jets, the inner liquid
is injected at a much larger velocity than the average
velocity of the outer liquid. The large shear at the interface
due to the velocity difference decelerates the jet, causing it
to widen.

The large qualitative shape differences between the
widening and the thinning jets indicate a different balance
of dominant forces. These differences even change the
mechanism controlling drop size, which is highlighted by
the fact that in the widening regime dyyp # 2dje-
Representative data sets illustrate trends in drop size as a
function of ¢;, and u.,, as shown in the upper inset of
Fig. 3. To elucidate the drop-size scaling from these scat-
tered data, we use mass conservation to relate drop diame-
ter to the control parameters: the volume of a drop is
V = g;,7, where 7 is the drop formation time. Drop for-
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FIG. 3. Measured drop diameter (O) as a function of gj,/ gy
for widening jets with 7;,/ 7., = 0.1. The slope of the best fit,
shown as the solid line, is 0.46. Upper inset: Drop diameter as a
function of u,, for constant ¢;, (®) and as a function of g;,, for
constant g, (@). Lower inset: Image (top) just after drop pinch-
off, where the jet has retracted due to surface tension and just
before the next drop pinches-off (bottom). The end of the jet
travels a distance indicated by the arrow in this time interval.
Here, R, and R, vary from ~60-200 and ~1-60, respec-
tively.

mation encompasses three steps: advection and growth of
the droplet at the end of the jet, drop pinchoff, and finally
retraction of the neck. The advection of the growing drop-
let by the viscous drag is the slowest of these steps; images
illustrating the distance the jet is advected are shown in the
lower inset of Fig. 3. Since the velocity of the inner liquid is
much larger than the advection velocity, we expect 7 to
scale as the advected distance divided by the advection
velocity. This distance is typically ~ddr0p while the veloc-
ity is ~toy, which leads t0 dypp ~ (qin/ttou)"/?. This
agrees with the exponent of 0.46 determined from a fit of
the data for 7;,/ 1o = 0.1, as shown by the solid line in
Fig. 3. While we limit our discussion of drop scaling to
Nin/ Nout = 0.1, this result is notable because drop size is
set by viscous drag forces on the growing droplet, whereas
in the limit of 7,/ 7., >> 1, jet and drop diameters are set
solely by the tip diameter, regardless of the jet velocity.
To unify these two distinct jetting transitions, we con-
sider the balance of forces on the droplet immediately
before the dripping-to-jetting transition. In the first regime,
where the jets become thinner, the viscous shear stresses on
the drop must be balanced by surface tension; this balance
is given by the capillary number of the outer fluid, C,,, =
Noutlhout/ Y, at the transition. When C,, is small, surface
tension dominates, forcing the system to drip. By contrast,
when C,,, = O(1), the shear stress on the droplet is large
enough to overcome surface tension, leading to jetting. In
the second regime, where the jets become wider, the iner-
tial forces of the inner fluid must be balanced by the surface
tension forces; this balance is given by the inner Weber
number, W,, = pindtipufn /v. When W, is small, surface
tension dominates, forcing the system to drip. By contrast,
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FIG. 4. State diagram of the dripping-to-jetting transition in a
coflowing stream as a function of C,,, and W,,. Filled symbols
represent dripping while open symbols represent jetting. Each
shape is a different viscosity ratio, surface tension, or geometry.
Surface tension is 40 mN/m unless otherwise stated.
Square: i,/ Now = 0.01. Diamond: 1;,/ 7o, = 0.01, with the
extra capillary tube to increase uqy. Hexagon: ni,/ Moy = 0.01.
Circle: 1,/ 1ou = 0.01, with the extra capillary tube to increase
Uy Pentagon: mi,/Mow = 1. Triangle: 7,/ Mo = 10.
Star: 7in/Noue = 10 and y = 4 mN/m. Typical error bars for
different surface tensions are shown.

when W,, = O(1), the inertial forces are large enough to
overcome surface tension, leading to jetting. To generalize
this result, we vary the viscosity ratio between 0.01 and 10
and lower surface tension from 40 to 4 mN/m for
Nin/ Nout = 10. We plot a state diagram showing dripping
(closed symbols) and jetting (open symbols) as a function
of Cyy and “W,,. Dripping occurs when both C,,, and "W,
are small; however, there is a distinct transition when either
increases, as shown by the wide gray line in Fig. 4. The
good collapse of the data reveals that in the coflowing
stream the sum of the forces exerted on the droplet must
ultimately overcome surface tension forces to cause the
transition; this can be summarized by C,,, + W, = O(1).

Our results identify the different jetting responses and
highlight the importance of the coflowing viscous liquid in
the dripping-to-jetting transition. For our experiments, the
two jetting regimes result from a different balance of
dominant forces. However, the two regimes can be inte-
grated into a single picture that ultimately depends on the
ability of these forces to deform the emerging liquid from a
spherical drop to a cylindrical jet. In general, we expect the
flow response to depend on 5 dimensionless parameters,
which can be chosen as (Wi, Cous Rins Routs Uin/ Uour)s
where R is the Reynolds number. We find that all of our
data are captured by ( W,,, C,,.) for moderate R . Thus our
work provides a general framework for understanding a
wide range of behavior, though clearly there are regions of
the parameter space yet unexplored. A better understand-
ing of this transition will provide a higher degree of control

over emulsions generated with shear flows. Moreover,
although we consider only Newtonian fluids, the basis for
this transition may also clarify similar processes involving
non-Newtonian fluids.
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