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A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical
backaction is developed, which is analogous to sideband cooling of trapped ions. We find that final
occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the
optical cavity linewidth. It is shown that the final average occupancy can be retrieved directly from the
optical output spectrum.
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Mesoscopic mechanical oscillators are currently attract-
ing interest due to their potential to enhance the sensitivity
of displacement measurements [1] and to probe the quan-
tum to classical transition of a macroscopic degree of
freedom [2]. For these applications the capability of initi-
alizing an oscillator with a long phonon lifetime in its
quantum ground state is highly desirable. So far this has
never been demonstrated because the combination of suf-
ficiently high mechanical frequencies (!m=2�) and
Q values in the relevant regime @!m � kBT has not
been reached [2]. In contrast, in atomic physics laser
cooling has enabled the preparation of motional ground
states [3,4]. This has prompted researchers to study means
of cooling a single mechanical resonator mode directly
using laser radiation [5–11]. Early work demonstrated
cooling of a mechanical degree of freedom of a Fabry-
Pérot mirror using a radiation pressure force controlled by
an electronic feedback scheme [5,6], in analogy to stochas-
tic cooling. Alternatively, the radiation pressure-induced
coupling of an optical cavity mode to a mechanical oscil-
lator [cf. Fig. 1(a)] can give rise to self-cooling via dy-
namical backaction [12]. In essence, the cavity delay
induces correlations between the radiation pressure force
and the Brownian motion that lead to cooling or amplifi-
cation, depending on the laser detuning. In a series of
experiments, these effects have been used to cool a single
mechanical mode [8,9,11]. While classical and semiclas-
sical analysis of dynamical backaction have been devel-
oped [11,13,14], the question as to whether ground state
cooling is possible has not been addressed.

Here a quantum theory of cooling via dynamical back-
action is presented. We find that final occupancies below
unity can indeed be attained when the optical cavity’s
photon lifetime (�) is comparable to or exceeds the me-
chanical oscillation period (2�=!m). Along these lines, an
analogy between this mechanism and the sideband cooling
of trapped ions in the Lamb-Dicke regime is elucidated [4].
In our setting the optical cavity mode plays the role of the
pseudospin mediating the frequency up-conversion. To
unveil this mechanism it is convenient to adopt a ‘‘shifted’’
representation in which the steady state of the laser driven

optical cavity mode maps onto the vacuum (j0ip). Denot-
ing by jni the number states of the mechanical oscillator
we have anti-Stokes (Stokes) processes in which the tran-
sition j0ipjni ! j1ipjn� 1i (j0ipjni ! j1ipjn� 1i) fol-
lowed by the decay of the cavity photon leads to cooling
(amplification) [cf. Fig. 1(b)]. If the cavity photon is suffi-
ciently long-lived (i.e., � * 2�=!m) a red detuning of the
laser from the cavity mode by an amount !m will ensure
that the desired anti-Stokes process is resonantly enhanced
while the deleterious Stokes process, being off-resonant, is
suppressed.

We treat the laser driven optical cavity mode coupled to
the mechanical resonator mode as an open quantum system
and adopt a rotating frame at the laser frequency !L. The
system Hamiltonian is given by [15]

FIG. 1 (color online). (a) Fabry-Pérot equivalent of a mechani-
cal eigenmode (frequency !m=2� and Q value Qm) coupled to
an optical cavity mode. (b) Level diagram of the two modes in a
shifted representation for perturbative optomechanical coupling
�. Light scattering processes induced by the latter can decrease
(solid lines) or increase (dashed) the mechanical eigenmode’s
quantum number n (� is the steady state amplitude in the optical
cavity mode and j0ip; j1ip; . . . its Fock states).
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Here ap (am) is the annihilation operator for the optical
(mechanical) oscillator, !p (!m) is its angular frequency,
and �0L is the laser detuning from the optical resonance. We
have also introduced the driving amplitude � �

2
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P=@!L�ex

p
, where P is the input laser power and 1=�ex

is the photon decay rate into the associated outgoing
modes. The optomechanical coupling via radiation pres-
sure can be characterized by the dimensionless parameter
� � �!p=!m��lm=L�, with lm �

�������������������
@=2m!m

p
the zero point

motion of the mechanical resonator mode, m its effective
mass, and L an effective optical cavity length. For typical
materials and dimensions [11] one obtains �� 10�4.

The optical cavity losses and the intrinsic dissipation of
the mechanical resonator give rise to a dissipative contri-
bution to the Liouvillian L0D (i.e., L0 � ��i=@�	H0; . . .
 �
L0D) that is of Lindblad form with collapse operators [16]:��������
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p
am. Here

�m � !m=Qm is the mechanical oscillator’s natural line-
width and n�!m� its Bose number at the environmental
temperature. We will focus on the regime 	n�!m� �
1
�m � !m, �m � 1=� and �, �j�j � 1, 1=!m�, where
� is the steady state amplitude in the optical cavity mode
(see below). The first condition will turn out to be neces-
sary for ground state cooling, the second one is satisfied in
all recent experiments [8,9,11], and the last one, given the
smallness of �, will hinge on having a sufficiently low
input power.

To study the dynamics generated by L0, it proves useful
to apply a shift to the normal coordinates: ap!ap��,
am!am�� with the c numbers � and � chosen to cancel
out all the linear terms in the transformed Liouvillian. To
lowest order in the small parameters � and 1=Qm we have
the following: � � ��=�2��0L � i�, � � ��j�j

2. We in-
clude the radiation pressure-induced optical resonance
shift into the effective detuning �0L � 2�2j�j2!m ! �L.
While the dissipative part of the Liouvillian remains in-
variant, the Hamiltonian transforms into
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Henceforth we will refer to the primed representation (1) as
the ‘‘physical’’ one and to the unprimed representation (2)
as the shifted one.

The smallness of �2 and 	n�!m� � 1
=Qm imply a wide
separation between the time scales for cooling and heating
the mechanical oscillator and those characterizing the dy-
namics of the optical cavity mode and the mechanical
oscillation period. Thus, the electromagnetic environment
(including the optical cavity) can be regarded as a struc-
tured reservoir with which the mechanical mode interacts
perturbatively [cf. Fig. 1(b)]. This prompts us to derive a

‘‘generalized quantum optical’’ master equation for the
reduced density matrix [16] of the latter: � � Trpf�g.
This procedure can also be viewed as an adiabatic elimi-
nation [17,18] of the optical cavity in the presence of fast
rotating terms ( / e�i!mt) in the optomechanical interac-
tion [19]. We note that while in the physical representation
the steady state average occupancy of the optical cavity is
given by j�j2, in the shifted one its steady state is simply
the vacuum j0ip. Thus, we obtain
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In the first term we have redefined !m to include the light-
induced shift of the mechanical frequency. The second and
third terms correspond, respectively, to cooling and heating
induced by the coupling to the thermal bath (contributions
/ �m) and by inelastic laser light scattering processes
[cf. Fig. 1(b)] with rates

 A� � �2 4�2

4�2�2
L � 1

!2
m�3

4�2��L �!m�
2 � 1

: (4)

In the shifted representation it is simple to understand
these cooling and heating processes in terms of perturba-
tion theory in the small parameters �j�j and� [cf. Eq. (2)].
To lowest order in � only the states j0ip and j1ip partici-
pate yielding the same results as for an equivalent dissipa-
tive two level system [cf. Fig. 1(b)] [18]. This scenario is
thus similar to the laser cooling of a trapped ion in the
Lamb-Dicke regime [3,4], or of a nanomechanical resona-
tor coupled to an ‘‘artificial atom’’ [20] or an ion [21]. An
important caveat in this analogy is that there is no external
driving for � � 0. Furthermore, though the parameter �2

will play a role reminiscent of the Lamb-Dicke parame-
ter—determining, for example, the relative spectral weight
of the sidebands—the efficiency of the cooling process
will depend solely on �2j�j2, and Eq. (4) will remain valid
for arbitrary � provided �2 is sufficiently small. This
absence of a ‘‘direct’’ driving amplitude also implies that
the cubic term in Hamiltonian (2) does not contribute to the
master equation (3) as it only generates terms that are
higher order in �2. Thus to the lowest order there is no
‘‘diffusive channel’’ and the theory is equivalent to a
quadratic Liouvillian. Furthermore, Eq. (4) coincides
with its counterpart in a classical treatment of the canonical
variables as used in Ref. [11].

Henceforth we focus on the regime �L < 0 for which
there is a net laser cooling rate � � A� � A� > 0. In this
regime Eq. (3) has a well-defined steady state that trans-
formed back to the physical representation yields a shifted
thermal state. The corresponding average occupancy, to
which the system converges on the time scale 1=��� �m�,
is given by haymamiSS � nf � j�j

2 with nf � 	�mn�!m� �

A�
=��m � �� and j�j2 � �2�4�4=�4�2�2
L � 1�2. How-
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ever, the final temperature is determined by nf as the other
term corresponds to a coherent shift.

As we start from thermal equilibrium, initially the num-
ber of phonons is given by ni � n�!m�. Thus, from the
expression for nf it is clear that for appreciable cooling
(i.e., nf � ni) we need �� �m. In this regime

 nf �
�
�m
�
ni � ~nf

��
1�O

�
�m
�

��
; (5)

with

 ~n f �
A�
�
�

4�2��L �!m�
2 � 1

16�2!m���L�
: (6)

Inspection of Eq. (5) shows that two regimes can be dis-
tinguished. In the first regime heating is dominated by the
intrinsic dissipation of the mechanical resonance and the
final average occupancy is proportional to the initial one.
This behavior has been demonstrated experimentally
[8,9,11]. On the other hand for sufficiently weak intrinsic
dissipation or high laser power, the heating is dominated by
the scattering of laser light. In this second regime the final
occupancy is given by ~nf (cf. Fig. 2). Thus the optimal
value of nf solely depends on the product!m� and is found
by minimizing with respect to the normalized detuning
~	 � ��L. This yields the fundamental limit

 ~n TL � minf~nf�~	�g �
1
2�

�����������������������������
1� 1=4!2

m�2
q

� 1�; (7)

for ~	opt � �
������������������������
1� 4!2

m�2
p

=2. The regime !m�� 1 is in
essence the adiabatic limit [15], since the cavity dynamics
is much faster than the mechanical motion. Some recent
experiments fall into this parameter range [8]. Expanding
Eq. (7) we obtain ~nTL � 1=4!m�� 1 precluding ground
state cooling. The resulting final temperature is of order

@=kB� in complete analogy with the Doppler limit of the
laser cooling of trapped atoms [4].

We turn now to the regime where retardation effects
become significant (i.e., !m * 1=�). This has indeed
been observed in recent experimental work pertaining to
both amplification [14] and cooling [9,11] of a mechanical
oscillator mode. In this regime the optical cavity field
cannot respond instantaneously to the mechanical motion
and the asymmetry in the Stokes and anti-Stokes scattering
rates becomes more pronounced leading into the analog of
the ‘‘resolved sideband’’ limit of the laser cooling of
trapped atoms. More precisely for 4!2

m�
2 � 1, Eq. (7)

yields ~nTL � 1=16!2
m�2 � 1 implying that in this limit

one can achieve ground state cooling. A sound benchmark
to evaluate the cooling performance is whether average
occupancies below unity can be attained. Equation (7)
leads to the following criterion: ~nTL < 1, !m� >
1=

������
32
p

, and Eq. (6) implies that nf < 1 is only possible

for j�L � 3!mj �
�����������������������������
8!2

m � 1=4�2
p

.
Finally, we consider the impact of the intrinsic dissipa-

tion on the optimal value of nf in the regime !m� >
1=

������
32
p

. The situation is reminiscent of the ‘‘atomic’’ laser
cooling of nanoresonators [20,21] where the finite Qm also
plays a crucial role. However, in the present context, the
analysis is simpler and it can be proved that the optimal
detuning is still given by ~	opt. Hence, the only relevant
issue is the upper bound on P required by the wide time
scale separation underpinning our adiabatic treatment of
the cooling and heating processes, which in the regime of
interest for ground state cooling (nf & 1) reduces to A� �
1=�. Thus, our treatment provides an upper bound for the
optimal nf when the finite Qm is considered. As an illus-
tration we consider the parameters of Ref. [11] (i.e., �L� >
0:5, !m=2� � 60 MHz, � � 3 ns). For a reservoir tem-
perature of 4 K we have ni � 1:4� 103. If we consider the
improvements in the mechanical Q values of toroid micro-
cavities due to vacuum operation (Qm � 3� 104) a cool-
ing rate of 2.8 MHz is then required to reach ni�m=� < 1
[cf. Eq. (5)].

The cooling process gives rise to photons which have
frequencies that differ from the pump laser (!L). Thus it
can be studied in an experiment by measuring the spectrum
of the scattered light. As depicted in Fig. 1(a), we consider
a one-sided cavity and the relevant observable is the output
power. The input-output formalism implies that in the phy-
sical representation its spectrum S�!� is given by the Four-
ier transform of ei!L�h	

������������
1=�ex

p
ayp�t� �� � a

y
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 �

	
������������
1=�ex

p
ap�t� � ain�t�
iSS. In the shifted representation

ap�t� ! ap�t� � � and the classical input just adds a
c number to the cavity steady state amplitude. Along the
lines of our derivation of Eq. (3), ap�t�, a

y
p�t� are treated as

environment operators to be reduced to the system opera-
tors am�t�, a

y
m�t� by integrating out the corresponding

Heisenberg equations of motion. A straightforward calcu-
lation based on perturbation theory and the theory of

FIG. 2 (color online). Final (steady state) average phonon
number ~nf as a function of normalized laser detuning (�L�)
and normalized mechanical angular frequency (!m�). The con-
tour lines indicate the values ~nf � 1 and 10, respectively.
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quantum Markov processes [4,16] then yields
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where the relative order of the corrections is given by �2

for all frequencies, we have normalized to number of
photons per unit time and unit frequency, and we have
defined �eff � �m � �. As expected there is emission of
blueshifted (anti-Stokes) photons associated to cooling and
redshifted (Stokes) photons associated to heating. These
motional sidebands have a linewidth determined by the
effective damping rate �eff and weights (N�) determined
by A�; namely, N� �

�
�ex
A�nf and N� �

�
�ex
A��nf � 1�.

The final occupancies can be retrieved by comparing the
above spectra [Eq. (8)] for different input powers. The
quantity 	N��P� � N��P�
P0=	N��P0� � N��P0�
P pro-
vides an upper bound for the ratio nf=ni. Here we have
introduced a ‘‘reference’’ low power P0 for which �,
A� � �m implying nf�P0� � ni, and assumed that the
input power P induces appreciable cooling [i.e., nf�P� �
ni]. It is important to note that (given ni) this upper bound
provides an accurate direct measurement of the final tem-
perature for nf �

1
2 . On the other hand the worst case

scenario occurs for !m�� 1 and nf � ~nf where it yields
2nf. However, for nf & 1 an accurate measurement is
afforded by the quantity

 

N��P�
N��P�

N��P0�

N��P0�

ni
ni � 1

�
nf�P�

nf�P� � 1
�

~Cni � P ~A�
~C�ni � 1� � P ~A�

with ~C � @!L�ex�4 ~	2 � 1�=4�2�2Qm and ~A� �
4�!m=	4�~	� �!m�

2 � 1
, that provides a clear signature
of ground state cooling when it can be achieved. This is in
contrast to the case of a laser cooled trapped ion [4] where
a well-defined bath associated to the intrinsic dissipation is
lacking and detailed balance yields N� � N�.

In summary, we have derived a quantum theory of
cooling using radiation pressure induced dynamical back-
action and shown that ground state cooling can be achieved
as the optical cavity linewidth becomes smaller than the
mechanical frequency, in analogy to atomic sideband cool-
ing. We find that the threshold to attain occupancies below
unity is given by !m� > 1=

������
32
p

. Furthermore, we have
shown how the spectrum of the optical cavity output could
be used to measure the final temperatures achieved. Our
results are relevant for a wide range of experimental real-
izations of cavity self-cooling [8,9,11] and could apply to
other systems exhibiting dynamical backaction such as an
LC circuit with its capacitance modulated by a mechanical
oscillator [22].
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Note added.—Recently, we became aware of similar
results by Marquardt et al. [23].
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