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The spectrum of two spin-up and two spin-down fermions in a trap is calculated using a correlated
Gaussian basis throughout the range of the BCS-BEC crossover. These accurate calculations provide a
few-body solution to the crossover problem. This solution is used to study the time evolution of the system
as the scattering length is changed, mimicking experiments with Fermi gases near Fano-Feshbach
resonances. The structure of avoiding crossings in the spectrum allow us to understand the dynamics
of the system as a sequence of Landau-Zener transitions. Finally, we propose a ramping scheme to study
atom-molecule coherence.
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Optical lattices are a powerful tool to study few-body
systems. When tunneling is negligible, optical lattices can
be viewed as an ensemble of individual harmonic traps
where the properties of these systems can be studied. The
interaction between the particles can be tuned using a
Fano-Feshbach resonance [1], and the number of particles
in each lattice site can be controlled [2,3]. In a recent
experiment with optical lattices, the spectrum of two fer-
mions in a trap has been measured [2], demonstrating that
few-body trapped systems can be studied in their own
right. Also, the BCS-BEC crossover has been routinely
explored in experiments with ultracold Fermi gases [4–
9]. In this Letter, we explore the spectrum and dynamics of
four trapped particles, and we show how a few-body for-
mulation allows us to obtain accurate solutions of the
system without making the standard approximations of
many-body theory. This provides an explicit representation
of avoided crossings between the atomic degenerate Fermi
gas (DFG or BCS)-type states and molecular BEC-type
states. Our results directly apply to optical lattice experi-
ments, and they provide a few-body perspective on BCS-
BEC crossover dynamics.

Specifically, we calculate the spectrum of two pairs of
trapped fermionic atoms interacting through short-range
potentials, all with the same mass m. One pair is assumed
to be distinguishable from the other pair, but the two atoms
within each pair are indistinguishable. The s-wave scatter-
ing length a of the short-range interactions will be tuned in
the standard manner [1], which allows us to explore the
BCS-BEC crossover as a function of interaction strength
near a broad Fano-Feshbach resonance. Even though the
BCS theory is not expected to apply to a 4-particle system,
we still use this term to refer to the dynamical regime
where a is small and negative. By solving the problem
from a few-body perspective, we are able to give accurate
properties—especially energy levels as well as time-
dependent dynamics—of the full quantum mechanical
spectrum at zero temperature. As a result, we achieve a
deeper understanding of the global topology of the spec-
trum, in addition to making quantitative predictions of
transition probabilities and dynamical properties of this

system when interactions change with time as in experi-
ments [4–9].

To obtain the energy spectrum, we use a correlated
Gaussian basis set [10,11]. A diabatization procedure re-
duces the system to a tractable number of relevant eigen-
functions, after which we solve the time-dependent
Schrödinger equation using the diabatic representation.

The Hamiltonian adopted is
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In this convention, particles 1 and 2 are ‘‘spin up’’ and
particles 3 and 4 are ‘‘spin down.’’ The two-body potential
function V�rij� is taken to be a purely attractive Gaussian,
V�rij� � V0 exp��r2

ij=2d2
0� where the width d0 of the

Gaussian is fixed and the depth V0 is tuned to produce
the desired two-body scattering length a. To obtain results
independent of the model potential properties, we concen-
trate on the range d0 � aho, where aho � �@=m!0�

1=2 is
the trap length. By considering different widths d0 ranging
from 0:05aho to 0:01aho, we have verified that our results
exhibit a weak dependence on d0. All results presented in
this Letter correspond to d0 � 0:01aho. The eigenspectrum
of Eq. (1) is obtained by an expansion into correlated
Gaussian basis set, i.e.,

 �fdijg�r1; r2; r3; r4� � Sf 0�RCM�e
�
P

j>i
r2
ij=2d2

ijg (2)

with RCM � �r1 � r2 � r3 � r4�=4 the center-of-mass co-
ordinate,  0 the center-of-mass ground state  0�RCM� �

e�2R2
CM=a

2
ho , and S the symmetrization operator. Opposite-

spin fermions are treated as distinguishable particles, so
S � �1� P 1;2��1� P 3;4� where P is the permutation op-
erator. The wave functions obtained from this basis set are
in the ground center-of-mass state (with JCM � 0). The
relative coordinate wave function has quantum numbers
J� � 0�, since the basis functions only depend on RCM

and the interparticle distances, rij.
The basis functions, defined in Eq. (2), are characterized

by the set of values fdijgwhich are selected semi-randomly.
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While the dij corresponding to different spin fermions are
selected to range from a fraction of d0 up to a couple of
times aho to describe dimer formation, those dij corre-
sponding to equal spin fermions are selected to be of the
order of the trap length aho. The typical size of the basis set
used in these calculations is about 7000–15 000. The ad-
vantage of the correlated Gaussian basis set is that all the
matrix elements can be calculated analytically in terms of
the fdijg’s and the properties of the two-body potential and
the trap. Prior to diagonalizing the Hamiltonian, a linear
transformation eliminates linear dependence, typically re-
ducing the basis set size by less than 10%. The basis set is
fixed while V0 is tuned to give different scattering lengths,
whereby matrix elements are calculated once and then used
to obtain the spectrum throughout the entire range of the
BCS-BEC crossover.

The accuracy and convergence of the calculations have
been verified in detail. The ground state energy agrees with
fixed-node diffusion Monte Carlo (FN-DMC) calculations
throughout the BCS-BEC crossover [12]. For example, the
ground state energy at unitarity varies from 5:099@! to
5:027@! as we change d0 from 0:05aho to 0:01aho; FN-
DMC calculations for a square well potential of range
0:01aho lead to a ground state energy 5:069�9�@! [12].
The difference between our results and the FN-DMC re-
sults is thus about 1%, where the shape and range of the
interactions start to play a role. Higher excited states are in
agreement with the BCS and BEC limiting behaviors.
Furthermore, the ground and excited states in the BEC
can be used to extract the dimer-dimer scattering length,
which agrees with the Petrov et al. prediction [13], and the
corresponding effective range [12].

The spectrum as a function of � � 1=a shows a series of
apparent crossings and avoided crossings in the unitarity
region. The avoided crossings can be roughly characterized
by their width ��, the range over which the two adiabatic
eigenstates interact appreciably, into two main categories:
narrow crossings, where ��� 1=aho, and wide crossings,
where �� * 1=aho. We adopt a variant of the diabatization
procedure presented in Ref. [14] to diabatize narrow cross-
ings while leaving wide crossings adiabatic, which gives
smooth energy curves. Figure 1 presents the partially-
diabatic spectrum in the BCS-BEC crossover. The inset
shows a zoom of the transition region, i.e., the strongly
interacting regime where the avoiding crossings occur.
This structure of avoiding crossings permits a global
view of the manner in which states evolve from weakly
interacting fermions at a < 0 to all the different configu-
rations of a Fermi gas at a > 0, i.e., molecular bosonic
states, fermionic states, and molecular boson-Fermi mix-
ture (see Fig. 1). Furthermore, it allows us to visualize
concretely the possible pathways of the time-dependent
sweep experiments, as is shown below.

A partially-diabatic representation can be used to de-
scribe a ramp of an initial configuration through the BCS-

BEC crossover as in the experiments carried out at differ-
ent laboratories, like JILA and Rice. The initial configura-
tion is propagated using the time-dependent Schrödinger
equation. Starting from the ground state in the BCS side,
the parameter � is ramped through the resonance to the
BEC side at different speeds � � d�

dt . In a homogenous
system, the ramps are only characterized by the initial
density �, the speed � and m. This suggests that � �
m
@� j

d�
dt j is the relevant dimensionless quantity that charac-

terizes the ramp speed in large systems. Thus, we will use
� to compare 4-body results with large systems. This idea
of using the density, and not properties of the trap, to
connect few-body calculations with large systems has
been previously implemented [15].

To interpret our numerical results, we apply the Landau-
Zener approximation, which predicts that the probability
for a transition from the adiabatic �j to �i is Tij��� �
e�ßij=�, where ßij are dimensionless parameters extracted
from properties of the adiabatic eigenstates, as is discussed
below.

The nonadiabatic coupling or P-matrix controls the
probability of nonadiabatic transitions to a good approxi-
mation using the Landau-Zener model. The coupling be-
tween two adiabatic states �i and �j is Pij��� � h�ij

@�j

@� i

where � is the adiabatic parameter. Clark has shown that, if
the transition has a form consistent with the Landau-Zener
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FIG. 1 (color online). The energy spectrum for four particles in
a trap is shown versus the dimensionless quantity �aho (20 states
that correlate diabatically with the 20 lowest energies in the
noninteracting limit). The solid curve is the ground state. The
dashed curves are states that diabatically approach excited
dimer-dimer configurations, the dash-dotted curves correspond
to states that represent one dimer plus two free atoms on the BEC
side, while the states in circles correlate diabatically to four free
atoms. The lowest curve drawn with circles is the Fermi gas
ground state on the BEC side of the resonance. Inset: zoom of the
adiabatic spectrum in the crossover regions. In this figure, all
states are considered, showing the rich structure of avoiding
crossings.
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approximation, then the P-matrix element for a transition
from �j to �i has a Lorentzian form whose width, along
with the corresponding eigenenergies, characterizes the
Landau-Zener parameter ßij [16]. We numerically evaluate
all the potentially important Pij and verify that the largest
couplings generally have a smooth single-peak form that is
approximately Lorentzian. The largest Pij relevant for this
specific dynamical sweep corresponds to transitions among
�1, �2, �5, and �14. Here, the partially-diabatic states are
labeled in increasing order of their energy on the BCS side
(see Fig. 1). �1 refers to the ground state, �2 is the first
excited dimer-dimer configuration, �5 is the second con-
figuration with a dimer and two atoms, and �14 is the
lowest configuration with no dimers, the ‘‘fermionic
ground state on the BEC side.’’ The final probability dis-
tribution can be explained as a sequence of Landau-Zener
transitions between these four partially-diabatic states
where the positions of the peaks of the Pij��� determine
a specific order in which the transitions occur, namely 1!
2, followed by 2! 5 and 1! 5, and finally 5! 14.

We use pi to denote the probability of ending up in state
�i following one ramp that started out in the DFG ground
state (#1) on the BCS side. This Landau-Zener model then
predicts that
 

p1 � �1� T5;1��1� T2;1�;

p2 � �1� T5;2�T2;1;

p5 � �1� T14;5��T5;1�1� T2;1� � T5;2T2;1	;

p14 � T14;5�T5;1�1� T2;1� � T5;2T2;1	:

(3)

The sum of all these probabilities is unity by construction.
The Landau-Zener parameters obtained from the P-matrix
analysis are ß2;1 
 35, ß5;1 
 43, ß5;2 
 14, and ß14;5 

90. Interestingly, the Landau-Zener model shows decent
agreement with the numerical results despite the neglect of
many possible transitions. Figure 2 presents the probability
of evolving in a certain configuration following a single
unidirectional ramp, as a function of the dimensionless
ramp speed parameter �. The numerical ramps are initiated
at �i ��7=aho and finalized at �f � 7=aho. As the speed
is increased, the final state changes from a molecular
bosonic ground state, i.e., �1, to a ‘‘fermionic ground
state,’’ i.e., �14, in qualitative agreement with experiments.

To relate our results with experiments carried out at
JILA and Rice, we write the Landau-Zener parameter for
atom-molecule transitions � � ßmol=� in terms of experi-
mentally accessible variables. If the dependence of a on the
magnetic field is approximated in the usual manner as
a�B� � abg�1�

w
B�B0
�, then � � �dB=dt�=wabg (measured

near unitarity, i.e., where the transitions occur). Therefore,
� � ßmol�dB=dt�

�1�@jwabgj=m which agrees with pre-
vious theoretical predictions [17,18]. The dependence of
� on � has been experimentally verified [19]. To evaluate
�, we use the average density for the noninteracting 4-

particle Fermi gas, namely � 
 0:153=a3
ho. The molecular

fraction, the fraction of atoms that becomes molecules
after the ramp is over, is probably the most relevant quan-
tity to compare with experiments. For our 4-body system,
the molecular fraction is defined as the probability of
ending up in a dimer-dimer configuration plus half of the
probability to form a configuration of the ‘‘dimer plus two
free atom’’ type. In the experiments we compare with, the
molecule fraction was fitted to a Landau-Zener function,
i.e., pLZ

mol � fm�1� e�ßmol=��, where fm is the maximum
conversion efficiency which depends on temperature.

Whether a Landau-Zener function is the correct func-
tional form to describe the molecule formation fraction in
large systems remains a question that existing experiments
have not resolved [18,20,21]. The Landau-Zener model
presented in this work for four particles does not predict
a single Landau-Zener function but a combination of dif-
ferent Landau-Zener terms. However, the final molecule
fraction predicted by this model and the numerical results
for the molecule formation fraction can be approximately
fitted by this Landau-Zener function with ß

�4�
mol 
 59� 6;

this value is higher than the two-body prediction of ß
�2�
mol 


42. Our results are consistent with the experimental
Landau-Zener parameter obtained in Ref. [4] for 40K.
The fit of the experimental data to a Landau-Zener formula
predicted a ß

exp
mol 
 62� 15. Also, experiments carried out

at Rice measured the Landau-Zener parameter for 6Li [7].
Taking into account the conditions of the experiment and
the properties of the 6Li Fano-Feshbach resonance at
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FIG. 2 (color online). The probability of evolving into a given
configuration is shown as a function of the dimensionless ramp
speed parameter �. The symbols correspond to the full numeri-
cal solution while the curves are Landau-Zener results. The solid
curve and circles correspond to the ground state configuration.
The dash-dotted curve and crosses correspond to higher dimer-
dimer excitations. The dashed curve and squares correspond to
ramps that produce a dimer plus two free atoms. The dotted
curve and diamonds correspond to the lowest configuration of
four free atoms, i.e., the Fermi gas ‘‘ground state’’ on the BEC
side of the resonance.
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B 
 543:8G, we estimate ß
exp
mol � 90. Both experiments

were carried out at finite temperature and, consequently,
maximum conversion efficiencies were approximately
fm � 0:5, while our calculations are at T � 0 where fm �
1. In summary, both experiments are in general agreement
with the four-body predictions. In the following, we pro-
pose more sophisticated sweeps to study atom-molecule
coherence.

Atom-molecule oscillations [22] or quantum beats [15]
have previously been explored for condensates and also for
fermionic systems near a narrow Fano-Feshbach resonance
[23]. To study atom-molecule coherence in a Fermi gas
near a broad Fano-Feshbach resonance, we have consid-
ered different ramping schemes and noticed one that en-
hances the atom-molecule oscillations. Starting in the
ground state on the BCS side, one ramps at medium speed
(�� 80) to the BEC side and pauses for a time �t at a
value �still; then, one ramps back at the same speed to the
BCS side where the scattering length is close to zero.
Finally, one slowly ramps � to the BEC (�� 7) side and
measures the resulting molecular fraction. This is shown as
a function of �t in Fig. 3(a). Observe that this ramping
scheme produces large coherent oscillations in the molecu-
lar fraction. To interpret their frequencies, we Fourier
transform the time-dependent molecular fraction [see
Fig. 3(b)]. The frequency domain peaks correlate with
the most important configurations during the waiting pe-
riod at �still � 5=aho. The Bohr frequencies at ! 
 28!0

correspond to coherences between states differing in one
broken dimer bond. For example, the highest peak is a
coherence between �5 and �14 while the second highest is
a coherence between �1 and �5. The frequencies around
! 
 57!0 correspond to coherences between states differ-
ing in two broken dimers bonds, e.g., coherences between
�1 and �14, and between �2 and �14. In optical lattice
experiments, this kind of multipeak structure should be
particularly pronounced in a tight trap.

The four-body problem remains fundamental and chal-
lenging. We have presented an accurate numerical solution
of the spectrum of two ‘‘spin up’’ and two ‘‘spin down’’

fermions in a trap throughout the range of the BCS-BEC
crossover. Even though the spectrum presents a rich struc-
ture of avoided crossings, we have shown that a simple
Landau-Zener model approximately describes the dynam-
ics of unidirectional ramps. The spectrum and dynamics of
this system is interesting for optical lattice experiments.
These would allow access to physics that cannot be probed
in the two-body system, like corrections to the energy
spectrum due to the dimer-dimer interaction, and also to
the atom-dimer interaction. Also, the system of two ‘‘spin
up’’ and two ‘‘spin down’’ fermions in a trap exhibits many
of the ingredients of the BCS-BEC crossover problem, and
in that sense, the present results provide a few-body per-
spective on Fermi gas experiments.
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FIG. 3. (a) Molecular formation fraction is shown as a function
of the delay �t. (b) Fourier transform of the Fig. 3(a). The peaks
of the spectrum correspond to the most important energy tran-
sitions.
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