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We describe a peculiar fine structure acquired by the in-plane optical phonon at the � point in graphene
when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect
is most pronounced when this lattice mode (associated with the G band in graphene Raman spectrum) is in
resonance with inter-Landau-level transitions 0) �, 1 and �; 1) 0, at a magnetic field B0 ’ 30 T. It
can be used to measure the strength of the electron-phonon coupling directly, and its filling-factor
dependence can be used experimentally to detect circularly polarized lattice vibrations.
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In metals and semiconductors the spectra of phonons are
renormalized by their interaction with electrons. Some of
the best known examples include the Kohn anomaly [1] in
the phonon dispersion, which originates from the excita-
tion or deexcitation of electrons across the Fermi level
upon the propagation of a phonon through the bulk of a
metal and a shift in the longitudinal optical phonon fre-
quency in heavily doped polar semiconductors [2]. How-
ever, despite the transparency of theoretical models the
observation of such effects is often obscured by the diffi-
culty to change the electron density in a material, whereas
in semiconductor structures containing two-dimensional
(2D) electrons the density of which can be varied, the
influence of the latter on the phonon modes is weak due
to a negligibly small volume fraction occupied by the
electron gas. In this context, a unique opportunity arises
in graphene-based field-effect transistors [3], where the
density of carriers in an atomically thin film (monolayer
[4–6] or a bilayer [7] ) can be continuously varied from
1013 cm�2 p type to 1013 cm�2 n type. Several Raman
experiments have already been reported [8,9] where the
variation of carrier density in graphene changes the optical
phonon frequency, in agreement with theoretical expecta-
tions [10–12].

When graphene is exposed to a quantizing magnetic
field, its electronic spectrum quenches into discrete
Landau levels (LLs) [13]. Then, the optical phonon energy
in graphene may coincide with the energy of one of the
inter-Landau-level (LL) transitions, a condition known as
magnetophonon resonance [14,15]. Recently, Ando has
suggested [16] that in undoped graphene the magnetopho-
non resonance enhances the effect of the electron-phonon
coupling on a spectrum of the in-plane optical phonons—
the E2g modes attributed to the G band in the Raman
spectra in Refs. [8,9,17–19]. In this Letter, we investigate
a rich structure of the anticrossing experienced by such
lattice modes when a magnetic field makes their energy
equal to the energy of one of the valley-antisymmetric
interband magneto-excitons [20]. Most saliently, the dif-
ference between circular polarization of various inter-LL

transitions [21,22] makes the magnetophonon resonance
distinguishable for lattice vibrations of different circular
polarization, which makes the number of split lines in the
fine structure acquired by a phonon and the value of split-
ting dependent on the electronic filling factor, �.

The in-plane optical phonons in graphene [relative dis-
placement u � �ux; uy� of sublattices A and B] have the
energy ! � 0:2 eV at the � point (in the center of the
Brillouin zone). These phonons and their coupling to elec-
trons can be described using the Hamiltonian [10,11],
 

Hph �
X
�;q
!by�;qb�;q � g

�����������
2M!
p

��xuy � �yux�;

u�r� �
X
�;q

1�������������������
2NucM!
p �b�;q � b

y
�;�q�e�;qe�iq�r;

(1)

where b�y��;q are annihilation (creation) operators of a pho-
non with polarization e�;q,M is the mass of a carbon atom,
and Nuc is the number of unit cells. Here and below, we use
units @ � 1. Also, we shall utilize a double degeneracy of
the E2g mode at the � point (at q � 0) and describe the in-
plane optical phonon in terms of a degenerate pair of
circularly polarized modes, uv � ux � iuy and uu � ux �
iuy. The constant g in Eq. (1) characterizes the electron-
phonon coupling [23]. This coupling has the form of the
only invariant linear in u permitted by the symmetry group
of the honeycomb crystal. It is constructed using Pauli
matrices � � ��x; �y� acting in the space of sublattice
components of the Bloch functions, [�K�A, �K�B] and
[�K�B,�K�A] which describe electron states in the valleys
K	 (two opposite corners of the hexagonal Brillouin zone)
and obey the Hamiltonian, in terms of the electron charge
�e < 0 [24],

 Hel � �v� � p; p � �ir� eA;

@xAy � @yAx � B:

Here, � � 	 distinguishes between K	, and momentum p
is calculated with respect to the center of the corresponding
valley. This Hamiltonian represents the dominant term of
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the next-neighbor tight-binding model of graphene [25–
27], and the electron-phonon coupling in Eq. (1) takes into
account the change in the A-B hopping elements due to the
sublattice displacement [28].

In a perpendicular magnetic field, Hel determines [13] a
spectrum of fourfold (spin and valley) degenerate LLs,
"��	n � �

������
2n
p

v��1
B in the valence band ("�n>0), conduc-

tion band ("�n>0), and at zero energy ("0 � 0, exactly at the
Dirac point in the electron spectrum), in terms of the
magnetic length �B � 1=

������
eB
p

. Such a spectrum has been
confirmed by recent quantum Hall effect measurements
[4–6]. In each of the two valleys, the LL basis is given

by two-component states
��
1
2

q


�����������������
1� �n;0

p
�n;m; i���1�

�n;0��n�1;m�, where �n;m are the LL wave functions de-
scribed by the quantum numbers n and m, the latter being
related to the guiding center degree of freedom. Here, we
neglect the Zeeman effect and simply take into account the
twofold spin degeneracy.

Excitations of electrons between LLs can be described
in terms of magneto-excitons (see Fig. 1). Those relevant
for the magnetophonon resonance are
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where the index A � v, u characterizes the angular
momentum of the excitation and the operators c�y��;n;m;�

annihilate (create) an electron in the state �, n, m in
the valley K�. The normalization factors N v

n �


�1� �n;0�NB� ���;�n�1� � ���;n��
1=2 and N u

n �


�1� �n;0�NB� ���;n � ���;�n�1���
1=2 are used to ensure the

bosonic commutation relations of the exciton operators,

 A�n; ��;  

y
A0 �n0; �0�� � �A;A0��;�0�n;n0 , where NB is

the total number of states per LL in a sample, including
the twofold spin degeneracy. These commutation
relations are obtained within the mean-field approximation
with hcy�;n;m;�c�0;n0;m0;�0 i � ��;�0��;�0�n;n0�m;m0 ���;� �
��;� ���;n�, where 0 � ���;n � 1 is the partial filling factor

of the nth LL. Similarly to magneto-optical selection rules
in graphene [20–22], �, n) �0, n	 1 v-polarized pho-
nons are coupled to electronic transitions with �; �n�
1� ) �; n and u-polarized phonons to �; n)
�; �n� 1� magneto-excitons, at the same energy �n ����

2
p
�v=�B��

���
n
p
�

������������
n� 1
p

� (Fig. 1), which follows directly
from the composition of the LL in graphene and the form
of the electron-phonon coupling in Eq. (1). In contrast to
photons that couple to the valley-symmetric mode
 A;s�n� � 
 A�n;K�� �  A�n;K���=

���
2
p

, electron-
phonon interaction in Eq. (1) couples phonons to the
valley-antisymmetric magnetoexciton  A;as�n� �

 A�n;K�� �  A�n;K���=

���
2
p

.
In terms of magneto-excitons we can now rewrite the

electron-phonon Hamiltonian in a bosonized form, as
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(3)

where gA are the effective coupling constants, with 
 �
3
���
3
p
a2=2��2

B and a � 1:4 �A (distance between neighbor-
ing carbon atoms). In the Hamiltonian (3), we have omitted
electronic excitations with a higher angular momentum
which do not couple to the in-plane optical phonon modes
(e.g., n) n0, with n0 � n	 1). The dressed phonon
propagator corresponding to the Hamiltonian (3) is ob-
tained by solving Dyson’s equation. The pole of this
propagator gives the antisymmetric coupled mode frequen-
cies ~!A,

 ~! 2
A �!

2 � 4!
� XN
n�nF�1

�ng
2
A�n�

~!2
A ��2

n
�

�nFg
2
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~!2
A ��2

nF

�
;

(4)

where nF stands for the number of the highest fully occu-
pied LL in the spectrum, and �n �

���
2
p
�v=�B��

������������
n� 1
p

����
n
p
�. In Eq. (4), the sum (extended up to the high-energy

cutoff N  ��B=a�2 above which the electronic dispersion
is no longer linear) takes into account interband magneto-
excitons, and the last term gives a small correction due to
an intraband magneto-exciton. In the small-field limit and
large doping (nF � 1), the solution of Eq. (4) reproduces
the zero-field result [10,11] if one replaces the sum by an
integral,

PnF
n�0 !

RnF
0 dn, approximates

���
n
p
�

������������
n� 1
p

�
2
���
n
p

and �nF � 0, and then linearizes Eq. (4) by replacing
~!A by ! in the denominator,
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FIG. 1. (a) Optical phonons are lattice vibrations with an out-
off-phase oscillation of the two sublattices. (b) Interband
electron-hole excitations coupling to phonon modes with differ-
ent circular polarization.
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where � � �1=
���
3
p
���g=t�2 ’ 10�3 is the same as in

Refs. [10,16] (t � 2v=3a 3 eV is the A-B hopping am-
plitude) and ~!0 is the renormalized phonon frequency in an
undoped graphene sheet at B � 0. The only variation arises
at high fields, ~!0 *

���
2
p
v=�B, where for nF � 0 the line-

arized Eq. (4) yields

 ~! ’ ~!0 �
�B

���
2
p

v
g2�0�

� ~!0�B=
���
2
p
v�2 � 1

:

The strongest effect of the phonon coupling to electron
modes occurs when the frequency of the former coincides
with the frequency �n of one of the magneto-excitons
 A;as�n�. In such a case, the sum on the right-hand-side
of the eigenvalue Eq. (4) is dominated by the resonance
term and may be approximated by 2!g2

A�n�=� ~!A ��n�.
This results in a fine structure of mixed phonon-
magnetoexciton modes,  A;as�n� cos�� bA sin�with fre-
quency ~!�A and  A;as�n� sin�� bA cos� with frequency
~!�A [where cot2� � ��n � ~!0�=2gA], which are deter-
mined for each polarization (A � v, u) separately,

 ~!	A�n� �
1
2��n � ~!0� �

����������������������������������������������
1
4��n � ~!0�

2 � g2
A�n�

q
: (5)

A generic form of the phonon-magnetoexciton anti-
crossing and formation of coupled modes, !	A�n� in un-
doped graphene (i.e., � � 0), is illustrated in Fig. 2(a).
Such an anticrossing and mode mixing is similar to that

described by Ando [16]. It can manifest itself in Raman
spectroscopy: in a fine structure acquired by the G line
(earlier attributed [8,9,17–19] to the in-plane optical pho-
non at the � point, E2g mode) at the magnetophonon
resonance conditions. The effect is the strongest for the
resonance �n�0 � ~!0 between the phonon and magneto-
exciton based upon �; 1) 0 and 0) �, 1 transitions.
When approaching the resonance (by sweeping a magnetic
field), the phonon line becomes accompanied by a weak
satellite moving towards it and increasing its intensity.
Exactly at the magnetophonon resonance, where both the
upper mode [ ~!�A�n�] and the lower mode [ ~!�A�n�] consist
of an equal-weight superposition of the phonon and
the resonant exciton, with cos� � sin� � 1=

���
2
p

, the G
band in graphene would appear as two lines. For �n�0 ����

2
p
v=�B � 36

����������
B
T�

p
meV (see [16,24] ) and ~!0 ’

200 meV, this resonance occurs in an experimentally ac-
cessible field range, B0 ’ 30 T. For the filling factor � �
0, the central LL (n � 0) is always half filled. Then,
coupling and, therefore, splitting of the u- and
v-polarized modes coincide, gu � gv, thus, giving rise
to a pair of peaks at the energies ~!	 � ~!0 	 gu sketched
in part I in Fig. 2(b). For the magnetic field value B0 ’
30 T and g ’ 0:2 eV [12], we estimate this splitting as
2gA  8 meV ( 64 cm�1), which largely exceeds the
G bandwidth observed in Refs. [8,9,17–19].

FIG. 2. (a) Coupled phonon and magneto-excitons as a function of the magnetic field. Energies are in units of the bare phonon energy
!. Dashed lines indicate the uncoupled valley-symmetric modes, with gA � 0. (b) Mode splitting as a function of the filling factor, as
may be seen in Raman spectroscopy, with the resonance condition �n�0 � ~!0, for � � 0 in (I), 0< j�j< 2 (in II), and � � 	2 (in
III). The absolute intensity of the modes is in arbitrary units, but the height and the width reflect the expected relative intensities.
(c) Mode splitting for n � 0, as a function of the filling factor �. (d) Same as in (c) for n � 1.
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Doping of graphene changes the strength of the coupling
constants gu and gv, as shown in Fig. 2(c). This is because
a higher (lower) occupancy of the n � 0 LL reduces
(enhances) the oscillator strength of the v polarized tran-
sition due to the availability of filled and empty states in the
involved LLs, whereas the same change in the electron
density has the opposite effect on gu. As a result, for an
arbitrary filling factor �2< �< 2, we predict that, in the
vicinity of magnetophonon resonance, the phonon mode
(and, therefore, G band in Raman spectrum) should split
into four lines [part II in Fig. 2(b)], with ~!	

u
� ~!	 gu for

u-polarized and ~!	
v
� ~!	 gv for v-polarized phonons.

In the quantum Hall state at filling factor � � 2, the
transition �; 1) 0 becomes successively blocked and no
longer affects the frequency of a v-polarized phonon,
whereas the transition 0) �, 1 acquires the maximum
strength, thus, increasing the coupling parameter gu. This
leads to the magnetophonon resonance fine structure con-
sisting of three peaks, with an even larger splitting between
side lines, as sketched in part III in Fig. 2(b). Interestingly,
this may enable one to directly observe lattice modes with
a definite circular polarization. A further increase of the
electron filling factor reduces the side line splitting which
should completely disappear at � � 6, after the transition
0) �, 1 becomes blocked by a complete filling of the �,
1 LL [Fig. 2(c)]. The same arguments hold for p-doped
graphene, though in this case the roles of u- and
v-polarized modes are interchanged.

Magnetophonon resonances with other possible inter-
LL transitions n) n� 1 occur at much lower magnetic
fields, Bn � B0=�

���
n
p
�

������������
n� 1
p

�2. For example, a resonant
phonon coupling with the magnetoexciton  A;as�1� is ex-
pected to occur at B1 � 5 T. Its description remains quali-
tatively similar, though for n > 0 the mode splitting is less
pronounced because of the B-field dependence of the
coupling constants in Eq. (3). One finds that gu � gv for
j�j< 2�2n� 1�. At � � 2�2n� 1�, filling of the nth LL
starts changing, which reduces splitting of the v-polarized
mode and gives rise to the four-peak structure. At � �
2�2n� 1�, where the �, n LL becomes completely filled,
splitting of the v-polarized phonon vanishes, thus, result-
ing in the three-peak fine structure [part III in Fig. 2(b)]
that would persist up to � � 2�2n� 3�. This is because the
splitting of the u-polarized modes remains constant up to
the filling factor � � 2�2n� 1�, above which population
of the�, (n� 1) LL starts to suppress the value of gu, until
the latter vanishes at � � 2�2n� 3� [see Fig. 2(d)].

In conclusion, we have predicted a filling-factor depen-
dence of the fine structure acquired by the in-plane (E2g)
optical phonon in graphene when the latter is in resonance
with one of the inter-LL transitions in this material. The
effect is expected to be most pronounced when the phonon
is resonantly coupled to the 0) �, 1 and �; 1) 0 tran-
sitions, which requires a magnetic field B0 ’ 30 T. The
predicted mode splitting may be used to measure directly

the strength of the electron-phonon coupling, and also to
distinguish between circularly (left- and right-hand) polar-
ized lattice modes.
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