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We propose a new approach to study quantum phase transitions in low-dimensional fermionic or spin
models that go from uniform to spatially inhomogeneous phases such as dimerized, trimerized, or
incommensurate phases. It is based on studying the length dependence of the von Neumann entropy
and its corresponding Fourier spectrum for finite segments in the ground state of finite chains. Peaks at a
nonzero wave vector are indicators of oscillatory behavior in decaying correlation functions and also
provide significant information about certain relevant features of the excitation spectrum; in particular,
they can identify the wave vector of soft modes in critical models.
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Recently, the use of concepts of quantum information
theory, such as the von Neumann entropy and other mea-
sures of entanglement between parts of a quantum system,
has gained popularity in statistical physics and solid state
physics. In particular, it has been shown that because these
quantities exhibit discontinuities or extrema at transition
points [1], they can be used to detect and locate quantum
phase transitions (QPTs) that occur as the coupling con-
stants are varied. This method has been used to study QPTs
in low-dimensonal spin [2-7] and fermionic [8-12]
problems.

In this Letter, we propose a new procedure which can be
used to obtain additional information from the von
Neumann entropy. We will show how to determine the
wave vector characterizing the new phase when the system
goes from a uniform to a spatially inhomogeneous phase.
Similarly, if the system has soft modes, the method can
extract their wave vector. Moreover, this method is well-
suited for studying cases when no true phase transition
takes place, but the decay of the correlation function
changes character. Thus, this method provides a powerful
new tool to determine the ground-state phase diagram of
interacting quantum systems.

The method is based on the study of the length depen-
dence of the von Neumann entropy of a finite segment of a
one-dimensional quantum system. It is known that this
quantity behaves fundamentally differently for critical
and noncritical systems [13,14]. The entropy of a subsys-
tem of length / (in units of the lattice constant a) in a finite
system of length N saturates at a finite value when the
system is noncritical, i.e., when the spectrum is gapped,
while it increases logarithmically for critical, gapless sys-
tems. An analytic expression has been derived [15,16] for
models that map to a conformal field theory [17]:

s(l) = % 1n[2: sin(;lﬂ g )
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and this form has been shown to be satisfied by critical spin
models. Here, c is the central charge, and g is a constant
shift due to the open boundary which depends on the
ground-state degeneracy. An additional alternating term,
which decays as a power law, appears near the boundary
[18].

The aim of this Letter is to show that the length depen-
dence of the von Neumann entropy of a subsystem can, in
fact, display a much richer structure than discussed until
now. Oscillations may appear; if so, they can be conven-
iently analyzed through the Fourier spectrum of s(I). The
method is especially appropriate when the density-matrix
renormalization-group (DMRG) algorithm [19] is used
because the density matrix of blocks of different lengths
are generated in the course of the procedure so that the von
Neumann entropy can be easily calculated.

We will first consider QPTs of the spin-one bilinear-
biquadratic model [20],

H = Z[COSG(S,- “8;11) +sinf(S; - S;11)*] ()

that occur at the exactly solvable Takhtajan-Babujian (TB)
[21] and Uimin-Lai-Sutherland (ULS) [22] points, corre-
sponding to # = — /4 and /4, respectively. As usual in
the DMRG approach, we consider open chains. The nu-
merical calculations were performed using the dynamic
block-state selection (DBSS) approach [23]. The threshold
value of the quantum information loss y was set to 108 for
the spin models and to 10™# for the fermionic model, and
the upper cutoff on the number of block states was set to
M. = 1500.

As shown in Fig. 1, a periodic oscillation is superim-
posed onto a curve that is described by the analytic form
given by Eq. (1) in both cases. At the TB point, the period
of oscillation is two lattice sites, while at the ULS point, it
is three lattice sites.
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FIG. 1. Length dependence of the von Neumann entropy of
segments of length / of a finite chain with N = 60 sites for
(a) the Takhtajan-Babujian and (b) the Uimin-Lai-Sutherland
models. The solid lines are our fit using Eq. (1), taking every
second and third data point in (a) and (b), respectively.

When the length [ is taken to be a multiple of two for the
TB point or a multiple of three for the ULS, the entropy s(/)
can be well-fitted using Eq. (1) with ¢ approaching the
known values, ¢ = 3/2 [24] and ¢ = 2 [25], respectively,
in the limit of large N.

In order to analyze the oscillatory nature of the finite
subsystem entropy s(/), it is useful to consider its Fourier
transform

1y
Slq) =5 > e (), 3)
=0

with 5(0) = s(N) =0, where g =2mwn/N, and n=
—N/2,...,N/2. Since s(I) satisfies the relation s(I) =
s(N — 1), its Fourier components are all real and symmet-
ric, §5(g) = 5(—gq); therefore, only the 0 = g = 7 region
will be shown. Except for the large positive §(g = 0)
component that grows with increasing chain length, the
other components are all negative. They are shown for the
two cases discussed above in Fig. 2.

As can be seen, apart from the ¢ = 0 point, the Fourier
spectrum exhibits (negative) peaks at ¢ = 7 and g =
24r/3, respectively. This is related to the fact that the TB
model has two soft modes, at ¢ = 0 and 7, while the ULS
model has three, at ¢ = 0 and =27 /3. Although finite-size
extrapolation shows that these components vanish in the
N — oo limit, these peaks in the Fourier spectrum are
nevertheless indications that the decay of correlation func-
tions is not simply algebraic in these critical models, but
that the decaying function is multiplied by an oscillatory
factor. When the same calculation is performed for 6 in the
range —37/4 < 6 < —m/4, where the system is gapped
and dimerized, the peak at ¢ = 7 remains finite as N — oco.
On the other hand, in the whole interval 7/4 = 0 < 7/2,
where the system is gapless and the excitation spectrum is
similar to that at the ULS point, the entropies for block

g/n

FIG. 2. Fourier spectrum §(g) (scaled by the system size N) of
the length-dependent von Neumann entropy of finite chains of
length N = 30, 60, and 90 for (a) the Takhtajan-Babujian and
(b) the Uimin-Lai-Sutherland models.

sizes that are multiples of three can be well-fitted with the
form given in Eq. (1) with ¢ = 2, and for finite chains, a
peak appears in §(q) at ¢ = 27r/3, in agreement with
Refs. [20,25]. Thus, peaks in the Fourier spectrum of the
length-dependent block entropy can provide useful infor-
mation about the excitation spectrum and the wave vector
of soft modes, even when they scale to zero in the thermo-
dynamic limit.

We can also demonstrate this procedure near the
AKLT point [26], corresponding to gt = arctanl/3 =
0.10247r. It is known [27] that this point is a disorder point,
where incommensurate oscillations appear in the decaying
correlation function; however, the shift of the minimum of
the static structure factor appears only at a larger 6; =
0.1387, the so-called Lifshitz point. In an earlier work
[11], some of us showed that s(N/2) has an extremum as a
function of 6 at 6,k . Here, we show that this extremum
is the indication that, in fact, O,y is a dividing point
which separates regions with a different behavior of s(I)
and 5(g).

At and below the AKLT point, i.e., for —7/4 <6 <
O k11, (1) increases with [ for small /, saturates due to the
Haldane gap [28], and then goes down to zero again as /
approaches N. The Fourier spectrum §(g) is a smooth
function of g (except for the ¢ = 0 component). The trans-
formed entropy 5(g) at the AKLT point, depicted in Fig. 3,
illustrates this behavior. For @ slightly larger than 6, T,
however, we find that s(/) does not increase to the satura-
tion value purely monotonically. Instead, an incommensu-
rate oscillation is superimposed. For somewhat larger 6
values, @ > 0.137r, this oscillation persists in the saturated
region, i.e., for blocks much longer than the correlation
length. This leads to a new peak in §(g) which moves from
small ¢ towards g = 277/3 as the ULS point is approached,
and gets larger and narrower, as can be seen in Fig. 3. This
6 value is slightly smaller than, but close to, the Lifshitz
point.
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FIG. 3. Fourier-transformed entropy §(g) for various 6, ob-
tained for a finite chain with N = 180 lattice sites. The lines
are guides to the eyes. The ¢ = 0 point, which has a large
positive value, is not shown.

It is also interesting to examine the behavior of the block
entropy in the lowest-lying excited state. This is shown in
Fourier-transformed representation, 5(g), in Fig. 4, for
several 6 values.

The appearance of the new peaks are even more pro-
nounced, and data for # < 6; confirm that this approach
can probe the incommensurate phase much closer to the
transition point than is possible using only the static struc-
ture factor S(g). Although the new peak(s) in §(g) in the
incommensurate phase move in an opposite sense to those
in S(g), i.e., the peak approaches 27/3 from zero and not
from 77, they can be easily related to each other. By also
calculating S(g), we found within the error of our calcu-
lation that the location, g, of the peak in §(q) is related to
the wave vector ¢ at which S(g) has its maximum by ¢ =
T—q/2.

The spin-1/2 frustrated Heisenberg chain is also known
to develop incommensurate correlations when J//J > 0.5,
where J is the nearest- and J' the next-nearest-neighbor
coupling. We have found that the entropies of blocks of
length N/2 and N/2 + 1, although substantially different
in value, both display a minimum as a function of J'/J at
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FIG. 4. Same as Fig. 3 but for the S5, = 2 quintet excited
state.

the Majumdar-Ghosh point [29]. Thus, the transition from
commensurate (dimerized) to incommensurate correla-
tions is marked again by an extremum of the block entropy.
In the incommensurate phase, a new peak that moves from
g = 0 towards g = 77/2 appears in the Fourier spectrum.
When the behavior of the block entropy in the lowest-lying
triplet excited state is examined, we find two oppositely
moving peaks in §(g). One appears exactly where the peak
was found for the ground state, g*, while the other occurs at
7 — ¢q*. By also calculating S(g) we have found again that,
to within the error of our calculation, this second peak is
located at the same (J'/J-dependent) wave vector at which
S(g) has its maximum [30].

Having demonstrated the usefulness of studying the
entropy profiles for models where the quantum critical
points are known, we now turn to the commensurate-
incommensurate transition in the 1D ¢ — ¢ — U Hubbard
model

H = IZ(CLC,»HU + CLI(TCZ-U)

i

+ t’Z(chHzo + CLQUCZ-U) + Uzn,ﬂlil, 4)
io i

which has been investigated recently [31]. For the half-
filled case (and setting ¢ = 1), the competition between #
and the Coulomb energy U will determine whether the
system is an insulator (# <r.) or a metal (¢ > t.). For
finite U values, this transition is preceded by the opening
of a spin gap at ¢, <r.. Between 7, and ., the wave
vector becomes incommensurate for ¢’ > t{.. Thus, the
commensurate-incommensurate transition is independent
of the metal-insulator transition [31].

As expected for a commensurate-incommensurate tran-
sition, we find that the entropy of blocks of length N/2
display an extremum as a function of #. For very large U
values, where the model is equivalent to the frustrated
spin-1/2 Heisenberg chain, the extremum occurs at #{- =
1/+/2, which maps to the Majumdar-Ghosh point. The
block entropy is shown in Fig. 5(a) for U = 3, a value
chosen so that our results can be directly compared to those
of Ref. [31]. This shows that the transition point can
accurately be detected and located on system sizes, that
are typically a factor of 2 to four smaller than those needed
with the standard methods used in Ref. [31]. For # > 0.6,
an incommensurate oscillation in s(/) becomes apparent, as
well as in its Fourier-transformed representation, 5(g).

When 35(g) is analyzed, it is found that a new peak
appears in the spectrum and again moves from small ¢
towards g = 7r/2 with the amplitude of §(7) decreasing
with increasing #. Therefore, the commensurate-
incommensurate phase boundary can be easily determined
by finding the extrema of s(N/2) as a function of ¢ for
various U values. This phase boundary is depicted in
Fig. 5(b).

In conclusion, we have shown that the length depen-
dence of the block entropy and its Fourier spectrum, de-
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FIG. 5. (a) Entropy of blocks of length N/2 as a function of #/
for the 1D ¢ — # — U Hubbard model for U = 3 and various
chain lengths. The dashed line is a spline through the minima.
(b) Phase boundary of commensurate-incommensurate transition
in the #'-U plane obtained from a finite-size extrapolation of the
minima in (a). The line is a spline through the indicated points.

termined for finite systems, can be used to characterize
phases in which the correlation function has an oscillatory
character. This method also provides significant informa-
tion about some features of the excitation spectrum and
allows one to identify soft modes in critical models. In
addition, an extremum in the block entropy as a function of
the relevant model parameter, which, in general, signals the
appearance of or change in a symmetry in the wave func-
tion, can also correspond to disorder points. In this case,
however, the entropy curve does not show anomalous
behavior because this is not a phase transition in the
conventional sense. When the decaying correlation func-
tion has an incommensurate oscillation, a new peak ap-
pears close to ¢ = 0 in the Fourier spectrum and moves
towards a commensurate wave vector as the control pa-
rameter is adjusted. In the entropy of the spin excited
states, another peak can appear at the wave vector of the
peak in the static structure factor, in addition to a peak at
the same position as in the ground-state entropy. A simple
relationship has been shown to exist between the wave
vectors of the peaks of 5(¢) and S(g). Our method is
ideal for use in conjunction with the density-matrix
renormalization-group algorithm because the block en-
tropy profile is generated as a by-product of the DMRG
procedure. This leads, on the one hand, to substantially
improved sensitivity compared to the calculation of corre-
lation functions, which depend on the accuracy of the
variational wave function, or of gaps, which require the
calculation of energy differences as well as a careful finite-
size scaling, and, on the other hand, to qualitatively new,
physically intuitive, and useful information. As this Letter
was being revised, an application of this method to the
SU(n) Hubbard model has appeared [32].
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