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We present a first-principles investigation of the phonon-induced electron self-energy in graphene. The
energy dependence of the self-energy reflects the peculiar linear band structure of graphene and deviates
substantially from the usual metallic behavior. The effective band velocity of the Dirac fermions is found
to be reduced by 4%–8%, depending on doping, by the interaction with lattice vibrations. Our results are
consistent with the observed linear dependence of the electronic linewidth on the binding energy in
photoemission spectra.
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The recent fabrication of single-layer graphene [1] has
attracted considerable interest because low-energy charge
carriers in this material have dispersion curves similar to
Dirac fermions with a zero rest mass and a constant group
velocity [2,3]. Because of the peculiar electronic structure
of graphene, electrons and holes exhibit exceptionally
large mobilities, and the density of states can be tuned
over a wide range by applying a gate voltage [2,3]. These
properties make graphene a promising candidate for new-
generation electronic and spintronic devices.

Angle-resolved photoemission spectroscopy (ARPES)
is used as a powerful tool for investigating quasiparticle
behavior with extremely fine energy and momentum reso-
lution [4]. The photoelectron intensity provides informa-
tion about the energy versus momentum dispersions of the
charge carriers and the associated lifetimes. Recent photo-
emission experiments performed on graphene showed a
peculiar dependence of the hole lifetime on the binding
energy, as well as a significant velocity renormalization
[5]. The measured carrier lifetime has been discussed
within a model including three different decay channels:
electron-phonon (e-ph) scattering, electron-plasmon scat-
tering, and electron-hole pair generation [5]. The linear
dependence of the linewidth on the binding energy was
attributed to the generation of electron-hole pairs. The
phonon-induced lifetime was assumed to be energy-
independent as found in conventional metallic systems
[5]. A subsequent theoretical work analyzed the carrier
lifetimes in graphene by adopting a two-dimensional
electron-gas model, and it concluded that the experimental
results could be explained without invoking the e-ph inter-
action [6].

In this work we investigate the e-ph interaction in gra-
phene within a first-principles approach. We calculated the
electron self-energy arising from the e-ph interaction using
a dense sampling of the scattering processes in momentum
space, and we extracted the velocity renormalization and
the carrier lifetimes from the corresponding real and imagi-
nary parts of the self-energy, respectively. Our analysis

shows that the self-energy associated with the e-ph inter-
action in graphene is qualitatively different from that found
in conventional metals. The imaginary part of the self-
energy shows a linear energy dependence above the pho-
non emission threshold, which directly reflects the band
structure of graphene. The real part of the self-energy leads
to a Fermi velocity renormalization of 4%–8% depending
on doping. We further propose a simple analytical model of
the electron self-energy capturing the main features of our
first-principles calculations. Our calculation allows us to
assign the low-energy kink in the measured photoemission
spectrum and part of the linear energy-dependence of the
electronic linewidths to the e-ph interaction.

The e-ph interaction in graphene is treated within the
Migdal approximation [7]. The contribution to the electron
self-energy �nk�E;T� arising from the e-ph interaction at
the temperature T is [7,8]:
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m;�
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where "nk is the energy of an electronic state with band
index n and wave vector k and @!q� the energy of a
phonon with wave vector q and branch index �. fnk and
nq� are the Fermi-Dirac and Bose-Einstein distribution
functions, respectively. The integration extends over the
Brillouin zone (BZ) of graphene of area ABZ and the sum
runs over both occupied and empty electronic states and all
phonon branches. The e-ph matrix element is defined by
gmn;��k;q� � hmk� qj�Vq�jnki, �Vq� being the change
in the self-consistent potential due to a phonon with wave
vector q and branch index �, while jnki, jmk� qi indi-
cate Bloch eigenstates. Equation (1) takes into account the
anisotropy of the e-ph interaction in k space, as well as
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retardation effects through the phonon frequency in the
denominators.

The electronic structure was described within the local
density approximation to density-functional theory [9].
Valence electronic wave functions were expanded in a
plane-waves basis [10] with a kinetic energy cutoff of
60 Ry. The core-valence interaction was treated by means
of norm-conserving pseudopotentials [11]. Lattice-
dynamical properties were computed through density-
functional perturbation theory [12]. We modeled an iso-
lated graphene by a honeycomb lattice of carbon atoms
within a periodic supercell. The graphene layers were
separated by 8.0 Å of vacuum [13], and the relaxed C-C
bond-length was 1.405 Å. Doped graphene was modeled
by varying the electronic density and introducing a neu-
tralizing background charge. We first calculated electronic
and vibrational states and the associated e-ph matrix ele-
ments on 72� 72 k points and 12� 12 q points in the BZ
of graphene. Then, we determined the quantities needed to
evaluate the self-energy given by Eq. (1) on a significantly
finer grid of 1000� 1000 k and k� q points in the
irreducible wedge of the BZ by using a first-principles
interpolation based on electron and phonon Wannier func-
tions [14–16]. The fine sampling of the BZ was found to be
crucial for convergence of the self-energy. In the calcula-
tion of the self-energy we used a broadening parameter �
of 10 meV, comparable with the resolution of state-of-the-
art photoemission experiments [4]. The calculations were
performed with the electron and phonon occupations
[Eq. (1)] corresponding to T � 20 K to make connection
with the ARPES experiment [5]. In what follows, we
discuss the computed electron self-energy by focusing on
a straight segment perpendicular to the �K direction and
centered at the K point in the BZ [Fig. 1].

We note here that within 2.5 eV from the Dirac point, the
angular dependence of the self-energy is insignificant (at
fixed energy E) [17]. As a consequence, the e-ph coupling
parameter �n�k̂� � �@Re�nk�E�=@EjE�EF is isotropic in
k space.

Figure 1 shows the calculated imaginary part of the self-
energy (which is closely related to the linewidth) as a
function of carrier energy, corresponding to three repre-
sentative situations: intrinsic, electron-doped, and hole-
doped graphene. We here considered doping levels corre-
sponding to 4� 1013 cm�2 electrons or holes. The corre-
sponding Fermi levels were found to lie at �0:64 eV and
�0:66 eV from the Dirac point, respectively. In the intrin-
sic system, we found that the electron linewidth due to e-ph
interaction is negligible (< 1 meV) within an energy
threshold @!ph for the emission of optical phonons
(@!ph � 0:2 eV being a characteristic optical phonon fre-
quency), while it increases linearly beyond this threshold
[Fig. 1(a)]. The scattering rate for electrons with energy
below the optical phonon emission threshold is negligible
because (i) only optical phonons are effective in e-ph
scattering and (ii) Pauli’s exclusion principle blocks tran-

sitions into occupied states. On the other hand, the linear
increase of the linewidth above the optical phonon energy
relates to the phase-space availability for electronic tran-
sitions and reflects the linear variation of the density of
states around the Dirac point in graphene. The energy
dependence of the electron linewidths in the electron-
doped and the hole-doped systems [Fig. 1(b) and 1(c),
respectively] can be rationalized by a similar phase-space
argument. We denote by ED the energy of the Dirac point
with respect to the Fermi level. For definiteness, we here
consider the electron-doped situation (ED < 0). When the
energy of the hole is exactly equal to jEDj � @!ph (i.e., at
�jEDj � @! in Fig. 1), there are no allowed final states for
electronic transitions through optical phonon emission,
resulting in a vanishing scattering rate at zero temperature.
As the hole energy departs from jEDj � @!ph, the line-
width increases linearly and exhibits a characteristic dip at
the Fermi level. The latter feature corresponds to forbidden
phonon emission processes, as discussed above for intrin-
sic graphene. The calculated energy dependence of the
electron linewidth deviates substantially from the standard
result which applies to conventional metals (Fig. 1, dashed
line) [18]. The latter consists of a constant scattering rate
above the phonon emission threshold and fails in reproduc-
ing the features revealed by our ab initio calculations.

Figure 2 shows the real part of the electron self-energy
arising from the e-ph interaction, for intrinsic and for
electron-doped graphene. The behavior of the hole-doped
system is qualitatively similar to the electron-doped case.
While in conventional metals the real part of the self-
energy decays at large hole energies (E<�@!ph)
[Fig. 2(b), dashed line], the self-energy in graphene shows
a monotonic increase in the same energy range [Fig. 2(b),
solid line]. Since the wave vector dependence of the self-
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FIG. 1. Calculated imaginary part of the electron self-energy
arising from the e-ph interaction at T � 20 K (solid lines) for
(a) intrinsic, (b) electron-doped, and (c) hole-doped graphene.
The self-energy �k�"k� was evaluated along the reciprocal space
line segment shown in the upper-left corner. The Fermi level and
the Dirac point are shown schematically in each case. We also
show for comparison the imaginary part of the self-energy for a
conventional metal (dashed lines) (Ref. [18] ).

PRL 99, 086804 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
24 AUGUST 2007

086804-2



energy in graphene within a few eV from the Fermi level is
negligible [i.e., �nk�E� ’ �n�E�] [17], we obtained the
quasiparticle strength Znk � �1� @Re�nk=@E��1 by
evaluating �1� dRe�nk�"k�=d"k�

�1. In all cases consid-
ered, the e-ph interaction was found to reduce the non-
interacting quasiparticle strength down to at most
Znk � 0:93 at the Fermi level. This suggests that a quasi-
particle picture is still appropriate at low energy, the e-ph
interaction largely preserving the weakly perturbed Fermi-
liquid behavior. The quasiparticle strength is related to
the velocity renormalization through 1� Z�1

nk �
�vnk � v

0
nk�=vnk, v0

nk and vnk being the noninteracting
and the interacting velocity, respectively. The velocity
renormalization is plotted in Fig. 2(c) and 2(d) for the
intrinsic and the electron-doped system, respectively. The
velocity renormalization at the Fermi level was found to
increase with the doping level, and it amounts to �4%,
�8%, and�6% in the intrinsic, the electron-doped, and in
the hole-doped system considered here. Our results indi-
cate that the velocity of Dirac fermions in graphene is
affected by the e-ph interaction. This bears important
implications for the transport properties of graphene-based
electronic devices.

In order to provide a simplified picture of the e-ph
interaction in graphene, we analyzed the various e-ph
scattering processes contributing to the electron lifetimes.
We repeated our calculations by restricting either the en-

ergy @!q� or the momentum transfer q in Eq. (1) to limited
ranges. When only the in-plane optical phonon modes
between 174 and 204 meV are taken into account in
Eq. (1), the electron linewidth is found to deviate from
the full ab initio result by 15% at most. In contrast, when
the momentum integration in Eq. (1) is restricted to small
regions around the high-symmetry points � and K, the
linewidth is found to deviate significantly from the full
calculation, indicating that a proper account of the entire
BZ is essential. Based on this analysis, we devised a
simplified single-parameter model of the e-ph interaction
in graphene. We assumed: (i) linear electronic dispersions
up to a few eV away from the Dirac point [19], (ii) an
Einstein model with the effective phonon energy @!ph set
to that of the highest degenerate zone-center mode, (iii) an
effective e-ph vertex g, independent of the electron, and
phonon momenta [17]. The e-ph matrix element g repre-
sents a free parameter in our simplified model and has been
determined by matching the model self-energy with the
full ab initio result. Within these assumptions, and with the
Fermi level set to zero, the imaginary part of the self-
energy reads

 Im ��E� �

���
3
p
a2

16
�2
Gg

2jE� sgn �E�@!ph � EDj; (2)

whenever jEj exceeds the characteristic phonon energy
@!ph, and vanishes otherwise. In Eq. (2), a is the lattice
parameter in Bohr units, �G � e2=@v0 � 2:53 is the ef-
fective fine structure constant of graphene, and g is the
average e-ph matrix element in Rydberg units. The fitting
to our calculated ab initio self-energy gave g �
3:5� 10�2 Ry. The real part of the model self-energy
can be straightforwardly obtained from Eq. (2) through
Kramers-Krönig relations. Figure 3 shows that this simpli-
fied model is in fairly good agreement with the full first-
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FIG. 3. Comparison between the electron self-energy obtained
from a first-principles calculation (solid lines) and a single-
parameter model (dashed lines): imaginary (upper panels) and
real (lower panels) part for the intrinsic system (left) as well as
for the electron-doped system (right). Note that the horizontal
energy ranges differ from those shown in Fig. 1.
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FIG. 2. Calculated real part of the electron self-energy arising
from the e-ph interaction at T � 20 K (solid lines) for
(a) intrinsic and (b) electron-doped graphene. The self-energy
was evaluated along the reciprocal space line segment shown in
Fig. 1. The corresponding velocity renormalization �vnk �
v0
nk�=vnk is shown in panels (c) and (d), respectively. We also

report, for comparison, the real part of the self-energy and the
velocity renormalization for a conventional metal (dashed lines)
(Ref. [18] ). At variance with conventional metals, the group
velocity in graphene shows additional dips when the carrier
energy is jEDj �!ph (arrows), reflecting the vanishing density
of states at the Dirac point.
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principles calculation. Therefore, despite its simplicity, our
single-parameter model captures the qualitative features of
the e-ph interaction in graphene.

In Fig. 4 we compare our first-principles calculations
with the width of the momentum distribution curve (MDC)
measured by ARPES experiments at 20 K on graphene
with a similar doping [5]. The width �knk of the MDC was
calculated taking into account renormalization effects
through �knk � Znk2Im�nk=@vnk [7]. Figure 4 shows
that, contrary to previous findings [6], the e-ph interaction
plays a significant role in reducing the carrier lifetime in
graphene, as it accounts for about a third of the measured
linewidth at large binding energies. The e-ph contribution
to the width of the MDC is found to increase linearly at
large binding energy, in agreement with experiment.

In conclusion, we have computed from first-principles
the velocity renormalization and the carrier lifetimes in
graphene arising from the e-ph interaction and we have
reproduced these results with a simplified model. The
calculated energy dependence of the phonon-induced elec-
tronic linewidths is shown to originate from the linear
electronic dispersions. The renormalization of the Fermi
velocity was found to be �4% for intrinsic graphene and
�8% for an electron doping of 4� 1013 cm�2, and it is
expected to affect the mobility of graphene-based elec-
tronic and spintronic devices.

We thank Y.-W. Son, G. Samsonidze and M. Lazzeri for
stimulating discussions. We are grateful to M. Calandra
and F. Mauri for carefully reading our manuscript and for
pointing out a numerical factor error in an earlier version.
This work was supported by NSF Grant No. DMR04-
39768 and by the Director, Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and
Engineering Division, US Department of Energy under
Contract No. DE-AC02-05CH11231. Computational re-

sources have been provided by NPACI and NERSC. Part
of the calculations were performed using the QUANTUM-

ESPRESSO [20] and WANNIER [21] packages.
Note added.—After submission of this manuscript we

became aware of a related work whose results are in
agreement with our conclusions [22].

*cheolwhan@civet.berkeley.edu
[1] K. S. Novoselov et al., Proc. Natl. Acad. Sci. U.S.A. 102,

10 451 (2005).
[2] K. S. Novoselov et al., Nature (London) 438, 197 (2005).
[3] Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, Nature

(London) 438, 201 (2005).
[4] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.

Phys. 75, 473 (2003).
[5] A. Bostwick et al., Nature Phys. 3, 36 (2007).
[6] E. H. Hwang, Y.-K. Hu, and S. D. Sarma, arXiv:cond-mat/

0612345.
[7] G. Grimvall, in The Electron-Phonon Interaction in

Metals, edited by E. Wohlfarth, Selected Topics in Solid
State Physics (North-Holland, Amsterdam, 1981).

[8] F. Giustino, M. L. Cohen, and S. G. Louie (to be pub-
lished).

[9] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
(1981).

[10] J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979).

[11] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991); M. Fuchs and M. Scheffler, Comput. Phys.
Commun. 119, 67 (1999).

[12] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001).

[13] O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
[14] F. Giustino et al., Phys. Rev. Lett. 98, 047005 (2007).
[15] We used nine maximally localized electronic Wannier

functions [N. Marzari and D. Vanderbilt, Phys. Rev. B
56, 12 847 (1997); I. Souza, N. Marzari, and D. Vanderbilt,
Phys. Rev. B 65, 035109 (2001)] spanning an energy
window of 30 eV.

[16] Our calculated phonon dispersions are in excellent agree-
ment with previous first-principles results of Ref. [13].

[17] C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie (to
be published).

[18] The e-ph interaction of a conventional metal was modeled
by assuming constant density of states, an Einstein spec-
trum, and a constant e-ph matrix element [S. Engelsberg
and J. R. Schrieffer, Phys. Rev. 131, 993 (1963)]. These
quantities were determined in such a way to match the
height of the graphene self-energy near the Fermi level.

[19] We used an energy cutoff of 6 eV. The resulting self-
energy was found to be largely insensitive to this choice.

[20] S. Baroni et al., computer code QUANTUM-ESPRESSO,
2006, http://www.quantum-espresso.org.

[21] A. Mostofi et al., computer code WANNIER, 2006, http://
www.wannier.org.

[22] M. Calandra and F. Mauri, arXiv:0707.1467.

 0.02

 0.04

 0.06

−2 −1.5 −1 −0.5

M
D

C
 w

id
th

 (
Å

−
1 )

Electron energy (eV)

FIG. 4. Calculated width of the ARPES momentum distribu-
tion curve for electron-doped graphene (solid line) compared to
the experimental result of Ref. [5] (dashed line). In our calcu-
lation, the Fermi level was set in order to simulate the sample
with 2:1� 1013 electrons=cm2 in Fig. 3 of Ref. [5].
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