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A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction
with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and
shell-filling cases, is theoretically investigated via the nonequilibrium Green’s function method. We obtain
a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra
of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative
differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions
with neighboring quantum dots are taken into account.
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In the past decade, the tunneling spectra of nanostructure
junctions such as single-electron transistors (SETs) [1,2]
and molecule transistors (MTs) [3–6] have been exten-
sively studied due to their important applications in quan-
tum computing, quantum communication, and ultrahigh-
density integrated circuits. Although the single-particle
energy levels and charging energies of such systems can
be obtained by ab inito or semiempirical methods [7–11], it
is still difficult to model the full tunneling spectra due to
the presence of Coulomb blockade and the uncertainty in
dot shape, size, and position.

The characteristics of tunneling current of SETs or MTs
can be classified into either the shell-tunneling case (with
no charge accumulation) or the shell-filling case (with
charge accumulation). In the shell-tunneling case, the elec-
tron Coulomb interactions are suppressed. Consequently,
current spectra directly reveals the one-particle resonance
energy levels. In the shell-filling case, the tunneling current
spectra become much more complicated due to the pres-
ence of electron Coulomb interactions. Consequently, the
charging energies and energy levels cannot be readily and
directly obtained from experimental data. Both physical
parameters are crucial not only in the optimization of
tunneling devices, but also for the understanding of funda-
mental physics of miniaturized nanostructures. Thus, it is
desirable to derive a simple formula that allows one to
determine the multiple energy levels involved and the
associated Coulomb interactions from the measured tun-
neling current spectra.

In this Letter, we derive a simple yet general closed-
form expression that is applicable for modeling the tunnel-
ing current through any nanostructure, including quantum
dots (QDs) and molecules, involving multiple energy lev-
els (i.e., the ground state plus all the excited states of
interest). This is done by solving a multilevel Anderson
model [12] via nonequilibrium Green’s function technique
[13], which has been extensively used for investigating the
Coulomb blockade and Kondo effect on the tunneling
current through the ground state of a single QD [12]. We

find that when more than one level in a QD or molecule is
involved in the charge transport, the average two-particle
occupation numbers play an important role in determining
whether a given energy channel is closed or open to the
tunneling current.

The system of an isolated nanostructure embedded
in a double-barrier junction [14–18] can be modeled
by the multilevel Anderson Hamiltonian as given in
Refs. [11,12]. The tunneling current through a nanostruc-
ture obtained via the Keldysh Green’s function technique
takes the following form: [12,13]

 J �
�2e
@

X
‘

Z d�
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�‘;L � �‘;R
ImGr
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where fL � f����L� and fR � f����R� are the Fermi
distribution functions for the left and right electrode, re-
spectively. Gr

‘ is the retarded Green’s function in level ‘
(with energy E‘). The chemical potential difference be-
tween these two electrodes is equal to the applied bias eVa.
�‘;L and �‘;R denote the tunneling rates from the nano-
structure to the left (source) and right (drain) electrodes,
respectively. For simplicity, these tunneling rates will be
assumed to be energy independent. Therefore, the calcu-
lation of tunneling current is entirely determined by the
spectral function, A��� � ImGr

‘���.
Following the standard procedures as described in

Ref. [12] (but extended to the multilevel case), we solve
the one-particle and two-particle Green’s functions Gr

‘ and
Gr
‘;‘ in the Coulomb blockade regime via a hierarchy of

equations of motion, which relate Gr
‘ to two-particle

Green’s functions, which are then related recursively up
to 2M-particle Green’s functions, where M is the number
of levels considered. The series is self-terminated, and the
2M-particle Green’s function has a simple expression,
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where �‘ � �� E‘ � i��‘;L � �‘;R�=2, N‘ denotes the
one-particle occupancy in level ‘, Njj � hnj;�nj;��i de-
notes the two-particle correlation function associated with
the same level j, U‘ denotes the intralevel Coulomb inter-
action in level ‘, and U‘j denotes the interlevel Coulomb
interaction between an electron at level ‘ and another at
level j. Substituting (2) into the equations of motion and
solve them recursively by using the principle of induction,
we obtain the following closed-form solution (details to be
published elsewhere):

 Gr
‘;‘ �
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where cj � Njj. q̂‘, âj, and b̂j are operators that put a
factor q‘, aj, and bj in the numerator and increases the
value of the denominator by U‘, 2U‘j, and U‘j, respec-
tively, when acting on a fractional function. For example,
b̂j�f=g� � �bjf�=�g�U‘j�. Here, q‘ � N�1

‘ � 1. aj �
1� 2Nj � Njj and bj � 2Nj � 2Njj denote the probabil-
ity of finding no particle and one particle in level j,
respectively. �m denotes the sum of Coulomb interactions
seen by a particle in level ‘ due to other particles in
configuration m, in which each level j�j � ‘� can be
occupied by zero, one, or two particles. pm denotes the
probability of finding the system in configuration m. pm
and �m can be obtained by repeatedly applying the opera-
tor (âji � b̂ji � cji) on Gr

2M for M� 1 times as described
in Eq. (3). For the M � 2 case (with levels ‘ and j), we
have three configurations with p1 � aj, p2 � bj, and p3 �

cj, while �1 � 0, �2 � U‘j, and �3 � 2U‘j. Based on
these simple rules, pm and �m for any number of energy
levels can be similarly determined. We see that the proba-
bility of finding the system in each configuration is deter-
mined not only by the average one-particle occupation
numbers but also by the average two-particle occupation
numbers.N‘ andN‘;‘ are obtained by solving the following
equations self-consistently:

 N‘ � �
Z d�
�
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‘���; (5)
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Both N‘ and N‘;‘ are limited between 0 and 1. The validity
of our results shown above can be verified in the following
limiting cases. (i) If the interlevel Coulomb interactions are
turned off, Eqs. (3)–(6) reduce to corresponding expres-

sions given in Ref. [12]. (ii) If we consider infinite intra-
level Coulomb interactions, our numerical results of the
tunneling current (two levels or coupled dots) are consis-
tent with that shown in Ref. [19], if the same parameters
are used.

To illustrate the usefulness of our theory, we calculate
the tunneling current spectra of an isolated CdSe QD
sandwiched between a STM tip (left lead) and a conducting
substrate (right lead) as studied experimentally in
Ref. [18]. We consider the case of three energy levels.
Because the tip substrate is biased at Va, the bare energy
levels of E‘ in the dot are changed to E‘ � �eVa. The
factor � � LL=�LL � LR� is determined by the distances
from the QD center to the tip (LL) and the substrate (LR),
respectively. Here � � 0:61, which is determined from the
separation between the first peak at negative bias and that
at positive bias [18]. Other physical parameters can also be
determined by comparing Eq. (4) with the peak positions
of the tunneling spectra observed in Ref. [18]. We obtain
the following. The chemical potentials of both electrodes
are 0.78 eV below the ground state level E1 at zero bias.
E2 � E1 � 0:236 eV, E3 � E1 � 0:456 eV, U1 �
0:137 eV, U12 � U21 � 0:122 eV, U2 � 0:07 eV, U3 �
0:06 eV, U13 � U31 � 0:1 eV, and U23 � U32 �
0:04 eV. These intralevel and interlevel Coulomb energies
are reasonable for the 3 nm diameter CdSe QD considered
here. We note that the p-like level in a spherical QD is
sixfold degenerate (including spin). However, the coupling
strength between the tip (or substrate) and the px- or
py-like orbital is weak. Therefore, only pz-like orbital
has been included, which is labeled by E2, while E3

denotes one of the d-like orbitals that is strongly coupled
to the leads.

Occupation numbers N‘ and N‘;‘ are obtained by solv-
ing the coupled equations [Eqs. (3)–(6)]. Once they are
determined, we calculate the tunneling current by substi-
tuting Eq. (4) into Eq. (1). Figure 1 shows the differential
conductance dJ=dVa as a function of applied bias for
various ratios of �L=�R. Curve (c) exhibits the maximum
number of resonant channels, which correspond to the
poles of the retarded Green’s function in Eq. (4). The first
eight peaks of curve (c) (with energy less than E3) are �1 �
E1, �2 � E1 �U1, �3 � E2, �4 � E1 �U1 �U12, �5 �
E2 �U2, �6 � E2 �U12, �7 � E1 �U1 � 2U12, and
�8 � E2 �U2 �U12. The charging energy of the ground
state U1 can be determined by the difference in bias
between the first two peaks. The two channels, � � E1 �
U12 and � � E1 � 2U12, are prohibited because those
resonance energies are below E2 (hence N2 � 0 andN22 �
0 when the applied bias aligns with these channels). The
limit �L=�R � 1 corresponds to the ‘‘shell-tunneling
case’’ [18]. According to Eqs. (5) and (6), N‘ and N‘;‘
are determined by the factor P � �‘;L=��‘;L � �‘;R�.
Therefore, N‘ and N‘;‘ approach zero in this limit.
Consequently, the peaks associated with the resonance
levels involving the intralevel and interlevel Coulomb

PRL 99, 086803 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
24 AUGUST 2007

086803-2



interactions will be suppressed, since the carrier will tunnel
out much faster than it can be fed. The peaks associated
with the single-particle levels, E1, E2, and E3, will be the
only resonance channels allowed in the limit of �L=�R �
1 as seen in curve (e). In the opposite limit, �L=�R � 1 we
have the so called ‘‘shell-filling case’’ [see curve (a)]. In
this case, bothN1 andN11 approach 1 when Va > E1 �U1.
Consequently, resonances at E2 and E2 �U2 are sup-
pressed while the resonances at E2 � 2U12 and E2 �U2 �
2U12 are enhanced. This indicates that the bare energy
levels are renormalized if charges reside in the QD.
Similarly for E3 related channels.

Next, we compare our theoretical prediction for the
tunneling current spectrum with that measured in
Ref. [18], where the observed differential conductance
peaks are broadened. The broadening is mainly due to
coupling to nearby QDs since the experiment was per-
formed at T � 4 K. To take into account the above broad-
ening effect, we replace each Lorentzian function
appearing in the differential conductance by a Gaussian
function of the form fi expf���� �i�

2=2�2
i g=��i

�������
2�
p

�. fi,
�i, and �i denote the peak strength, resonance energy, and
broadening width, respectively. Figure 2 shows the pre-
dicted differential conductance as a function of applied
bias at zero temperature. We have used the following
parameters: �L;1 � 1 meV, �R;1 � 0:15 meV, �L;2 �
3 meV, �R;2 � 0:6 meV, �L;3 � 1:5 meV, �R;3 �
0:375 meV. The variation in tunneling rates for different
levels reflects the difference in wave functions and the
bias-dependent barrier height. For simplicity, we assume
�i � �� �i, where � � 35 meV characterizes the broad-
ening due to coupling to nearby QDs. Both the positions
and relative strengths of these peaks are in very good
agreement with the experimental measurement reported
in Ref. [18]. If we remove the extrinsic broadening by
setting � � 0, the differential conductance spectrum ex-
hibits more resonance channels as shown in the lower part
of the figure, which cannot be resolved experimentally. To

illustrate the significance of the two-particle occupation
number, we apply our theory to the case of a coupled dot
embedded between two leads, where two QDs (dot A and
dot B) are coupled by interdot Coulomb interactions, even
though the interdot tunneling is weak. It is assumed that the
right lead is closer to dot A than to dot B. Thus, the
tunneling rate �R;B is 10 times smaller than �R;A, and the
total current is dominated by the current through dot A
(JA). Figure 3 shows the total tunneling current J � JA �
JB for various strengths of the interdot Coulomb interac-
tion (which may, for example, correspond to different
separations between the two dots). It is seen that negative
differential conductance (NDC) can occur due to the inter-
dot Coulomb interaction. The NDC characteristic of tun-
neling current can be understood mainly from the feature
of JA, since JA � JB. NDC first occurs at EB as dot B
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FIG. 2 (color online). Differential conductance as a function of
applied bias with and without the extrinsic broadening effect due
to coupling to nearby QDs. For better display, the broadened
spectra has been multiplied by a factor of 5.
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becomes filled, which leads to a suppression of the current
through the channel EA, and the current resumes as the
channel EA �UAB opens up when the bias further in-
creases. For comparison, we also plot in Fig. 3 the total
current Ja � Jb obtained with the approximation
hnj;�nj;��i � NjNj (dash-dotted curve). The difference
between this curve and the solid curve shows the signifi-
cance of treating the two-particle occupation number cor-
rectly. In particular, we see in the dash-dotted curve
(Ja � Jb) that the resonance channel at � � EA � 2UAB
is allowed even though the applied bias is below EB �UB
(i.e., dot B remains singly charged). Such a nonphysical
behavior in Ja � Jb arises due to the approximation NBB 

NBNB � 0 used, while if treated correctly NBB should
vanish under this condition. We also notice that the tunnel-
ing current increases only slightly when the applied bias
overcomes the charging energy of dot A (marked by EA �
UA) since we are considering a shell-filling case for dot B
(�L;B=�R;B � 10) here (NB 
 1). Increasing the applied
bias beyond the resonance channel at EA �UA �UAB
leads to a significant jump in the tunneling current.
However, this tunneling current is suppressed again at
EB �UB �UAB, because dot B is now filled with two
charges.

To further analyze the NDC behavior due to interdot
Coulomb interaction, we plot in Fig. 4 the differential
conductance for various ratios of �L;B=�R;B. Curve (a)
corresponds to the derivative of the solid curve shown in
Fig. 3. The NDC behavior is quite apparent. However, the
NDC behavior disappears in curves (b) and (c) when dot B
is not under the shell-filling condition, even though the
interdot Coulomb energy remains the same. When dot B is
in the shell-tunneling limit (�L;B � �R;B), JA becomes
unaffected by dot B, and the tunneling current [curve (c)]

exhibits mainly two resonance channels at EA and EA �
UA plus a weaker peak at EB �UAB, which is contributed
from JB. As illustrated in Figs. 3 and 4, when one employs
a SET as a charge detector, the interdot Coulomb interac-
tions due to neighboring QDs and the tunneling rate ratios
�L=�R should be carefully considered in the design.

In conclusion, a closed-form expression for the spectral
function for nanostructure tunnel junctions involving mul-
tiple energy levels has been derived and it has been em-
ployed to analyze the complicated spectra of the tunneling
current through a realistic single QD. Our present theory
also provides a useful guideline for the design of SET with
coupled quantum dots. We show that when the interdot
hopping effect is weak but the interdot Coulomb interac-
tions are strong, NDC behavior can occur and it depends
sensitively on the tunneling rate ratios for incoming and
outgoing electrons in each QD.
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