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The diagonal correlation energy due to n-n, p-p, and n-p pairing is shown to resolve the discrepancies
between shell gaps determined from binding energy differences and the gaps calculated with Woods-
Saxon potentials or with other mean-field models. The difference in diagonal correlation energy between
an N = Z nucleus with filled shells and the nucleus with one less nucleon resolves this problem in lowest
order. A previously derived result, that the diagonal correlation energy in the last occupied orbital for the
latter nuclei is 1/2 of the equivalent correlation energy for closed shell nuclei, is tested against observed

binding energies and found to be fairly accurate.
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One of the great puzzles in nuclear structure studies is
that mean-field potentials give accurate predictions of
single-particle energy-level orderings and spacings within
a shell, yet they substantially underestimate the ‘‘ob-
served” gaps between shells. In this work, we resolve
this striking discrepancy.

Bohr and Mottelson [1] note that the observed shell gap
for N = 8in '°0Ois 11.5 MeV, and the gap obtained from a
Woods-Saxon potential is 7.2 MeV. For “°Ca the gap at
N = 201is 7.3 Mev, while a Woods-Saxon calculation gives
5.0 MeV. In *°Ni the observed gap, for N = 28, is 6.2 MeV,
and a Woods-Saxon potential gives 4.4 MeV. A Skyrme
interaction [2] gives results similar to the Woods-Saxon
estimates; a 6.8 MeV gap for N = 8 in '°0; a 4.6 MeV gap
for N =20 in “°Ca. This Skyrme interaction [2] has an
effective mass close to 1.0, and gives a spectrum similar to
Woods-Saxon estimates. Other Skyrme interactions have
smaller effective masses and give larger shell gaps.
However, Skyrme interactions with smaller effective
masses give larger level spacings within a shell, usually
worsening the agreement with experiment.

We can resolve these discrepancies by examining the
meaning of observed spacing a little more closely. The
observed level spacings are defined by taking differences
of ground-state masses. Using *°Ca as an example, the
energy of the f;,, level, just above the N = 20 gap, is
defined as the difference in ground-state mass of *'Ca and
40Ca. Similarly, the energy of the d /2 level, just below the
N = 20 gap, is defined as the difference in mass of “°Ca
and *Ca. This method of assigning single-particle energies
presupposes that there are no many-body effects involved
in mass differences at closed shells. However, for nuclei
having approximately equal numbers of neutrons and pro-
tons, there are large changes in binding energy due to
many-body effects—even for closed shell nuclei. This
was first noted by Wigner [3], and we refer to this energy
as the Wigner energy in N = Z even-even nuclei. Here, we
note that there are also large correlation energy effects in
the even-odd and odd-even nuclei, with one neutron or one
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proton less than the N = Z even-even nucleus. The differ-
ence of these correlation energies accounts for much of the
discrepancy between observed and calculated shell gaps.

For nuclei with almost equal numbers of protons and
neutrons, n-p pairing, as well as like nucleon pairing, plays
an important role in nuclear structure studies. The interplay
of these pairing modes has been studied in the framework
of extended quasiparticle approximations [4—13] and refer-
ences therein, as well as in the framework of exact solu-
tions [14-19].

The Hamiltonian that is used [7,20] to treat n-p pairing,
both T =0 and T = 1, as well as like particle pairing is

H= Zsk(a,fak + aika,k + b}:bk + btkb,k)
=0

- S GIAlA; + BB + Clc)]
ij

- ZG{fO[D,TDj + MIM; + NIN)S(Q )] (D)
L]

where the indices i, j, and k denote values of j, for
spherical nuclei or the projection of angular momentum
on the nuclear symmetry axis for deformed nuclei. Here,
a}: (b,‘:) denotes a neutron (proton) creation operator; A;f =
(afa®;) and Bf = (bbT,). The T = 1 n-p pair creation
operator is C;r = %[a;rbti + atib;r] and the T =0 n-p
pair creation operator is D}L = ﬁ[a?bii - atib:r].

The terms M = (afb!) and N] = (al b1 ) are rele-
vant only for states having the same value of |}j,| or (), the
Nilsson quantum number in the case of deformed nuclei.
The M ;r and N 11‘ terms do not lead to collective correlations
but their diagonal matrix elements are important.

Our ordering convention is to put neutron creation op-
erators before proton creation operators in the Ct, D, M1,
and N1 operators that appear in the Hamiltonian and in the
wave functions. We define the proton wave function with
positive j, as the negative of the equivalent neutron wave
function to retain the usual plus sign in C*.
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Our variational wave function [20] is a product form

k m
© = [ [¥] [®nl0) (2)

where the index k runs over the unblocked orbitals, the
index m runs over all blocked orbitals (orbitals with one or
three nucleons), and |0) is the physical vacuum.

For unblocked orbitals, W, is given by

W, =[1+ U(1, DA} + UQ kB! + UG, kC]
+ U4 kD! + UG, kW], (3)

where U(i, k) are variational amplitudes. W,j denotes the
configuration in which level k is occupied by two neutrons
and two protons. The ordering of creation operators in W,j
is Al B

For blocked orbitals, ®,, is given by

®,, = [T(1, m)al, + T(2, m)bl, + T(3, m)A},b},
+ T(4, m)a),B1], 4)

where T(i, m) are variational amplitudes. The proton num-
ber and neutron number are projected from the wave
functions before the variational amplitudes are determined.
It should be noted that there is pair scattering between the
one-particle and the three particle configurations in ®,,,
but there is no scattering between configurations in @,
and configurations in V,,, because this two-body interac-
tion preserves particle number parity in all levels.

For the purposes of this analysis, it is most important to
note that there are large diagonal contributions to the
energies of the different configurations. Taking protons
and neutrons in the same orbit to have the same single-
particle energy €;, we obtain

E(AD) = E(Bl) = E(C]) = 2¢, — GT! 5)

ii

E(D]) =2¢; — GI70 (6)

L

EW]) = 4¢, — 3(GI7° + GITY), )

where E(A;f) is the energy of two neutrons in orbital .
For the levels having odd number parity configurations,
the diagonal energies are

E@al) = EG®)) = ¢, (8)
and
EAb]) = E(a!B)) =3¢, —3GI70 + GT7Y). (9)

Denoting the energy of the N = Z = A/2 nucleus as EJ,
the single-particle energy of the last occupied orbital as €,
and the energy of the first unoccupied orbital as €;, we
immediately get the usual result for the neutron addition
energy

B(A/2,A/2+ 1) — B(A/2,A/2) = ¢,  (10)

where B(Z, N) denotes a binding energy. However, the
neutron removal energy has a correlation contribution

B(A/2,A/2) — B(A/2,A/2 — 1)
=€ — 3G+ GIT']. (11)

The extra term in the neutron removal energy comes from
pairing.

To extract these correlation energies from experimental
data, we utilize the function [21,22], §V(Z, N),

8V(Z, N) = B(Z,N) — B(Z—2,N) — B(Z, N — 2)
+B(Z-2,N-2), (12)

for e-e nuclei. The use of §V(Z, N) was first applied to the
analysis of Wigner correlation energies by Van Isacker
et al. [23] and soon after by Satula et al. [24].

For odd mass nuclei, e.g., the nuclide with Z = (A/2 —
1) and N = A/2, we define a similar quantity

SK(Z—1,N)=B(Z—-1,N)—B(Z—1,N —2)
—B(Z-2,N)+B(Z—-2,N—2). (13)

0K(Z, N — 1) is defined similarly. Note that §V(Z, N)
can be rewritten as three terms

8V(Z,N) =[B(Z,N) — B(Z—2,N —2)]
—[B(Z, N—-2)—B(Z—-2,N—2)]
—[B(Z-2N)—B(Z-2N-2)] (14)

The first term is the binding energy gained by adding two
protons and two neutrons to the nuclide (Z — 2, N — 2) and
the last two terms are the binding energies gained by add-
ing a neutron pair and a proton pair separately. §V(Z, N)
gives the extra binding due to the four nucleon correlation.
S8K(Z — 1, N) can be rewritten in a similar way and it gives
the difference in binding energy gained by adding a proton
and two neutrons together, as compared to adding the
proton and neutron pair separately.

In lowest order, i.e., assuming that the wave-function is a
Slater determinant, we calculate for an N =Z = A/2
even-even nucleus

6V(A/2,A)2) = 3G{i:° + GI'7! (15)

11 4
and for the odd mass nuclide, we get
SK(A/2 —1,A/2) = 6K(A/2,A/2 — 1)

_ 3 T= L ~T=
= ZGZi 0+ EGI-T,,» I (16)
In order to extract these quantities from the experimental
data, we first subtract out all smooth contributions to the
binding energies such as the symmetry energy. Our sub-

traction procedure is a symmetrized version of one given
earlier [24]. For N = Z = A/2, we have
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Eqnoots = 0.25[8V(Z — 2, N) + 8V(Z + 2, N)
+8V(Z N —2) + 8V(Z N + 2)], (17)

for e-e nuclei. For odd mass nuclides, we replace 6V by
8K to calculate E, .. For the case Z = (A/2 — 1), note
that all values of Z in Eg,..n are odd. For both odd mass
and even mass nuclides, the number parity of both neutrons
and protons is the same for all terms in E, ., as it is in the
nuclide of interest. Having defined E .1, the Wigner
correlation energy is then defined as

EWigner = 0'25[8‘/(2» N) - Esmooth] (18)

In lowest order, the predicted correlation energy calculated
in this way for the nuclide (A/2 — 1, A/2) or (A/2, A/2 —
1) is 1/2 the value for (A/2, A/2). Configuration interac-
tion can change this value. In Fig. 1, we present the ratios
SK(A/2 —1,A/2)/8V(A/2,A/2) and 6SK(A/2,A/2 —
1)/8V(A/2,A/2) as a function of mass, where the tilde
indicates that Eg, .., has been subtracted out. The quanti-
ties 8V(A/2, A/2) and 8K(A/2, A/2 — 1) are strictly ex-
perimental quantities, depending only on nuclear ground-
state masses. The values cluster nicely near 0.5, the lowest
order estimate. Note the expanded scale in the figure.

To get a feeling for the magnitudes of the various
quantities involved in this ratio, we consider 40Ca in detail.
The quantity 6V(20, 20) is 8.30 Mev and Ey0i(20, 20) is
3.59 Mev. The quantity 6K(20,19) is 4.50 Mev and
Egmoon (20, 19) is 1.81 MeV.

The lowest order estimate of the decrease in the shell
gaps for (A/2, A/2) nuclides is

A(gap) = 3[G]7° + GI'], (19)
i.e., for the neutron gaps that we consider here,

A(gap) = J[8V(A/2,A/2) — 6K(A/2,A/2 — 1)], (20)
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FIG. 1. Correlation energy ratios as a function of mass. The x

axis is the mass of the nuclide (A/2, A/2). Open circles are for
(A/2, A/2 — 1); open squares for (A/2 — 1, A/2).

where we assume equal 7=0 and 7 =1 pairing
strengths. In addition to extracting shell gaps, we have
also extracted sub-shell gaps for N = Z nuclides; the six
neutron subshell p3;, — pi/ gap in 12C; the 14 neutron
subshell ds;, — s/, gap in *Si and the 16 neutron s/, —
ds, subshell gap in *%S. In Fig. 2, we compare shell gaps
for nuclides ranging from A = 12 to A = 56. For each
nuclide, we show the observed gap and the gap extracted
from the experimental data, when the correlation energy is
subtracted. We compare these gaps with spacings obtained
from a Woods-Saxon (WS) potential. The Woods-Saxon
potential parameters were slightly modified from the val-
ues obtained [25] for nuclides near A = 250. The potential
depth was adjusted to give the observed binding energy for
the orbital just above the gap of interest. The magnitude of
the spin-orbit potential was increased by 1 MeV. The
calculated gaps differ slightly from those cited [1,2]. The
comparison illustrates that the extracted gaps are much
more reasonable than the observed gaps for fixing nuclear
single-particle potentials. In fact, the agreement between
the extracted gaps and the Woods-Saxon calculations is
quite good, with the exception of '>C. Even for '?C, the
value of 1.95 MeV for the extracted gap is much more
reasonable than the observed value of 13.77 MeV.

The mechanism that explains the difference between
observed gaps and extracted gaps plays an additional role
in nuclear structure studies. It predicts that the excitation
energy of four-particle four-hole (4p-4h) configurations in
N = Z even-even nuclei, is reduced substantially relative
to the excitation energy of 1p-1h configurations. The ex-
citation energy of the 1p-1h configuration is

E(lp-1h) = €, — & +3[G[7° + G[7'l (D)
while
E(4p-4h) = 4€, — 4e,,. (22)

The fact that the 7 = 1, I™ = 0% state and the T = 0,
I™ = 1% states are close in energy in N = Z odd-odd
nuclei indicates that the pairing strengths are roughly
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FIG. 2. Comparison of gaps. For each nuclide, the ordering is
observed gap, extracted gap, and calculated WS spacing.
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equal. The two levels would be degenerate if the strengths
were equal. This near equality of pairing strengths is
suggestive of SU(4) symmetry. Our analysis of shell
gaps, however, includes regions where the 1-s splittings
are large and the SU(4) symmetry is no longer strictly
valid.

To make an estimate of shell-gaps that takes off-
diagonal pairing effects into account, requires rather de-
tailed assumptions. Single-particle energy-level spacings
and the relative magnitudes of diagonal and off-diagonal
pairing matrix elements are needed. Using the variational
wave function of Eq. (2), we consider “°Ca in detail, to get
some feeling for how large such effects might be. We
assume that protons and neutrons have the same single-
particle energies and that the spectra are those given by
Bohr and Mottelson [1], with the change that the gap at
N =20 is set to 424 MeV, as determined by our proce-
dure. It has long been known [26—28] that the diagonal
pairing matrix elements of a & interaction or a density
dependent & interaction are roughly twice as strong as
the off-diagonal pairing matrix elements. Using a
D1S Gogny interaction, [29], one gets a ratio of 2.4, which
we have used [20] previously, together with an off-
diagonal pairing strength of (19.6/A) MeV, based on sys-
tematics of the Wigner correlation energy [24]. Making
these assumptions for the interaction strengths, we find that
the relative shift in the binding energies of 3*Ca and *'Ca is
roughly 100 kev.

In this work, we have resolved the long standing puzzle
of the discrepancy between observed shell gaps and the
shell gaps obtained from mean-field calculations. By tak-
ing into account the Wigner energy in even-even N = Z
nuclides, and the counterpart of this energy in nuclides
with one less nucleon, we obtain shell gaps and sub-shell
gaps that are in very good agreement with mean-field
calculations, apart from 12C, We have shown that the ratio
of correlation energies in nuclides with one nucleon less
than the N = Z even-even nuclides, divided by the N = Z
nuclide correlation energy is in good agreement with the
ratio of 0.5, predicted by the n-p pairing force wave
functions [20] that take three-body and four-body correla-
tions into account. This correlation energy effect also gives
a substantial decrease in the excitation energy of 4p-4h
configurations relative to 1p-1h excitations in N = Z even-
even nuclei.
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