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An analysis of the dynamics of prolate swimming particles in laminar flow is presented. It is shown that
the particles concentrate around flow regions with chaotic trajectories. When the swimming velocity is
larger than a threshold, dependent on the aspect ratio of the particles, all particles escape from regular
elliptic regions. For thin rodlike particles the threshold velocity vanishes; thus, the arbitrarily small
swimming velocity destroys all transport boundaries. We derive an expression for the minimum
swimming velocity required for escape based on a circularly symmetric flow approximation of the
regular elliptic regions.
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The study of transport, mixing, and pattern formation
within suspensions of swimming microorganisms has
many applications for biotechnology, oceanic ecology,
and evolutionary biology. Dynamical systems methods
applied to the transport of passive tracers have given
some insight into the role of chaotic trajectories and im-
penetrable transport barriers for mixing in laminar flows,
while experiments with motile microorganisms and theo-
retical models of self-propelled particles have demon-
strated a rich variety of self-organization phenomena
including bioconvection, generation of coherent jets and
vortices, collective motion, etc. [1–4]. In these examples
the coherent behavior results from oriented swimming in
response to external fields like chemical concentration
(chemotaxis), illumination, gravitational torque, or is cre-
ated via direct or indirect interactions between the parti-
cles. In this Letter we analyze the effect of swimming on
the transport properties of steady and unsteady laminar
flows and examine the spatial distribution of self-propelled
particles when their shape and swimming speed are varied.

We consider a dilute suspension of noninteracting pro-
late spheroid particles propelled along their principal axis
and advected by an externally imposed flow. The magni-
tude of the swimming velocity vp is assumed to be con-
stant and typically small compared to the characteristic
flow velocity. The swimming direction is determined by
the particle orientation, represented by the unit vector p.
The motion of a particle is then described by

 

_r � vf�r; t� � vpp; (1)

where vf represents the velocity field of the ambient fluid.
The orientation of spheroidal particles in a fluid is

governed by the local flow field according to [5]

 

_p � 1
2!� p� �p � E � �I� pp�; (2)

where! � r� vf is the vorticity, E � �rvf �rvTf �=2 is
the rate of strain tensor, I is the identity matrix, and � is a
parameter representing the particle eccentricity, defined as

� � ��2 � 1�=��2 � 1�, where � is the ratio of the major
and minor axis of the spheroid.

We examine the dynamics of self-propelled particles in
steady and unsteady two-dimensional laminar flows.
Transport of passive particles in such flows is well under-
stood. In the time-independent case passive particles sim-
ply follow the streamlines, while in unsteady flows the flow
field is composed of well mixed regions filled with chaotic
trajectories and islands of regular elliptic regions where
particles move on quasiperiodic orbits that form impene-
trable transport barriers (KAM tori) [6].

In the numerical simulations we model the velocity field
by a cellular flow which exhibits the characteristic trans-
port properties described above and has been studied both
experimentally and theoretically for the mixing of passive
tracers [7,8]. The velocity field of the cellular flow is
defined by a stream function  as

  �x; y; t� �
U0L
2�

sin
�
2��x� x0�t��

L

�
sin
�

2�y
L

�
; (3)

where U0 is the maximum velocity of the flow and L is the
wavelength of the vortex chain. When x0 is constant the
flow is time independent and passive particles move peri-
odically on closed streamlines within a cell. These cells are
separated by separatrices that connect the saddle points
x � x0 � nL=2, y � nL=2, with n integer. For the time-
dependent flow we introduce a lateral oscillation of the
type used by Solomon and Gollub [8], x0�t� � B sin�!t�.
This perturbation induces chaotic mixing of passive tracers
in a region around the separatrices whose width increases
with B, that leads to fast dispersion and large scale trans-
port. Other particles move on regular quasiperiodic trajec-
tories typically localized within a single cell (see the
Poincaré section in Fig. 3).

In two dimensions the orientation of the self-propelled
particles can be represented by an angle � in the x-y plane,
and (1) and (2) reduces to
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We nondimensionalize the equations by introducing the
characteristic length and time scales, L and L=U0, and the
swimming parameter vs � vp=U0.

Let us first consider the time-independent cellular flow.
To monitor the distribution of the particles in a finite
domain we apply periodic boundary conditions on the
unit square. For spherical particles where � � 0, from
Eq. (4) and given the incompressibility of the flow, the
trace of the Jacobian is zero, and according to Liouville’s
theorem there can be no contraction in phase space volume.
However, for � � 0 aggregation is possible and numerical
simulations show that there is a nonuniform stationary
distribution with the particle density increasing from the
center of cells towards the separatrices. Figure 1 shows the
asymptotic distribution for particles initially distributed
uniformly in space with random initial orientations, for
different values of� and vs. Note that the nonuniformity of
the distribution depends on the shape of the particles and is
more pronounced for strongly elongated particles.

If we now consider the same trajectories on the infinite
x-y plane, the particles can be divided into two categories:
those which move between cells and participate in large

scale transport and those which remain trapped within a
single cell. In the absence of swimming all trajectories are
bounded. When swimming is introduced, a chaotic region
forms around the separatrices of the flow field in which
particles can cross into different cells and follow un-
bounded trajectories. This region is separated from trapped
particles which move on quasiperiodic orbits within a
single cell by an invariant surface. Increasing the swim-
ming velocity eventually destroys this transport barrier and
all particles escape. The minimum velocity corresponding
to the breakup of the last bounded orbit depends on the
aspect ratio �, as shown in Fig. 2. In the limit �! 1 the
minimum velocity required for escape of all particles
vanishes. Thus, for � � 1 swimming is a singular pertur-
bation as arbitrarily weak swimming leads to accumulation
of particles in a very thin chaotic region around the sepa-
ratrix lines, in contrast to spatially uniform distribution of
passive tracers. As vs ! 0 the width of the chaotic region
shrinks to zero resulting in a singular density.

We find qualitatively similar behavior in the time-
periodic cellular flow. Here the region occupied by un-
bounded chaotic trajectories remains finite in the vs ! 0
limit and coincides with the chaotic region of the passive
particles. In the case � � 1 all particles escape the ordered
elliptic region and participate in large scale transport; thus,
the chaotic mixing region is an attractor for the dynamics
of swimming particles. Output from numerical simulations
show this in Fig. 3.

For�< 1 a threshold velocity exists for the preservation
of transport barriers as in the time-independent case.
Increasing the amplitude B reduces the size of the elliptic
regions and therefore reduces this swimming velocity
threshold (see Fig. 2). Varying the frequency ! does not
qualitatively alter the structure of the flow and has no
significant effect on the particle distribution.

FIG. 1 (color online). Nonuniform steady state particle distri-
bution. Top left: � � 1, vs � 0:016; top right: � � 1, vs �
0:095; bottom left: � � 0:9, vs � 0:016; bottom right: � � 0:7,
vs � 0:095. Dark gray (blue) indicates particles which move
between cells; light gray (red) are trapped particles.
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FIG. 2. Minimum velocity versus aspect ratio for nonexistence
of transport barriers. The broken line indicates numerical results
for the cellular flow; the solid line is a plot of the analytical
result of Eq. (10). Data points show velocity threshold for the
time-dependent case for B � 0:12 (+) and B � 0:06 (�).
Inset: Angular velocity versus average radius for the cellular
flow (solid line) and parabolic fit (broken line).
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To study the impact of rotational diffusion we introduce
an additive Gaussian noise term ��t� to the first equation of
(4), which satisfies h��t���t0�i � 2Dr��t� t0� where Dr is
a diffusivity constant. Results are included in Fig. 3. The
noise has the effect of slowing down the emptying of the
central core and increasing slightly the width of the chaotic
region. Our investigations indicate for Dr & U0=L empty-
ing of elliptic regions occurs. As the intensity of the noise
is increased further the effects are gradually lost and even-
tually particle distribution remains constant.

The behavior observed in the numerical simulations can
be explained by an analysis of the dynamics of self-
propelled particles within an elliptic island, that we ap-
proximate by a circularly symmetric vortex with angular
velocity ��r�. Neglecting for the moment the particle’s
motility, the equations of motion can be expressed in polar
coordinates as
 

_� � ��r�; _� � ��r� �
r
2

d�

dr
�1� � cos�2�� 2��	;

(5)

where � is the angle of the position vector and � is the
orientation angle of the particle. This leaves a system of
two coupled oscillators characterized by the phase differ-
ence � � �� �, that is the orientation of the particle with
respect to the radial direction

 

_� �
r
2

d�

dr
�1� � cos�2��	: (6)

For �< 1 the phase difference changes monotonically. A
bifurcation occurs at � � 1 and semistable fixed points
exist along the line �
 � ��=2. The system is therefore
driven to synchrony, with the particles oriented tangen-
tially to the streamlines. Note that when the swimming

velocity is zero the two orientations ��=2 are equivalent.
This behavior occurs for any nonconstant ��r�.

If we now introduce a swimming velocity into Eq. (5)
and express it in terms of the phase difference �, we have
 

_r � vp cos���;

_� � �
vp
r

sin��� �
r
2

d�

dr
�1� � cos�2��	:

(7)

For the special case of a solid body rotation the second
term of the second line of Eq. (7) is zero. This results in the
particle rotating with the same angular velocity as the flow.
In a corotating frame of reference the particle will swim in
a straight line and, as its dynamics are independent of �, no
aggregation of particles is possible.

For nonconstant angular velocity the simplest functional
form (resulting from a Taylor expansion around the center)
is ��r� � �0�1� �r=R0�

2	. This quadratic form agrees
well with the angular velocity of the rotation along the
streamlines of the cellular flow (see the inset in Fig. 2).
However, the qualitative behavior is not sensitive to the
particular form of ��r�, and other monotonically decreas-
ing functions yield similar results. We assume that r is
restricted to 0< r< R0, where R0 represents the radius of
a finite nonchaotic region in a flow.

Nondimensionalizing the equations with time scale
1=�0, length scale R0, and introducing the nondimensional
swimming velocity vs � vp=�R0�0�, we obtain
 

_r � vs cos���;

_� � �
vs
r

sin��� � r2�1� � cos�2��	:
(8)

In the central region, r� v1=3
s , the last term in the second

equation is small and the remaining system describes a
particle moving freely with constant velocity and orienta-
tion in the corotating frame. Any such particle eventually
leaves the central region, after which the reorientation due
to the flow becomes important. Here the structure of the
phase space can be characterized by the location of the �
nullclines

 ��r� � arcsin
�
vs

4�r3 �

��������������������������������������
vs

4�r3

�
2
�

1� �
2�

s �
: (9)

These nullclines, which separate regions of clockwise and
counterclockwise rotations in the phase space, are com-
posed of two symmetric branches along the � � ��=2
axis. Phase diagrams are shown in Fig. 4.

For � � 1 the system (8) has no fixed points, the half-
stable fixed point of the nonswimming particles at ��=2
has disappeared, while the one at ��=2 has split into two
branches of quasisteady states. Thus the only stable ori-
entation is now swimming against the direction of the flow.
Equation (9) has solutions for all values of r; therefore, the
nullclines extend to infinity and at no point is a particle able
to complete a full rotation relative to the flow. When r >
v1=3
s , the trajectories approach the stable right branch of the

FIG. 3. Particles in time-dependent flow (B � 0:12, ! �
6:28). Left: Vs � 0:05, � � 1, snapshots taken at 	 �
0; 12; 24. Right: Vs � 0:05, � � 1, Dr � 0:5, snapshots taken
at 	 � 50; 200. Bottom right: Poincaré section for nonswimming
particles in the same flow.
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� nullcline where _r is positive and move away from the
center indefinitely.

When �< 1 there is an intersection between the �
nullclines and r nullcline which is along � � ��=2,
creating a fixed point with purely imaginary eigenvalues
at r
 � �vs=�1� ��	1=3, �
 � ��=2. At this point the
two branches of solutions of Eq. (9) coalesce and no real
solutions exist in the region r > r
. All trajectories are
closed periodic orbits that rotate around the fixed point
alternating between swimming towards or away from the
vortex center. The largest distance from the center on a
given trajectory is reached at � � ��=2, and satisfies the
condition rmax > r
.

Since we assumed that the vortex flow within the unit
circle represents a finite elliptic island surrounded by a

chaotic flow region, we obtain a condition for the nonexis-
tence of closed orbits within the unit circle, as r
 > 1, that
in dimensional form is equivalent to

 vp > R0�0�1� ��: (10)

This explains the linear dependence of the threshold swim-
ming velocity on the aspect ratio seen in the numerical
simulations. Substituting the angular velocity in the elliptic
points of the cellular flow, �0 � 2�U0=L, and the maxi-
mum time-averaged radius of the cellular flow trajectories
estimated numerically as R0 
 0:35L, we obtain a good
agreement with the numerical threshold velocity needed
for the breakup of the last transport barrier (see Fig. 2).

Thus we have shown that for a finite circular vortex
region there is a minimum swimming velocity such that
all particles leave the vortex. When the vortex is sur-
rounded by a chaotic region the particles may also enter
the regular flow region from outside; however, since in
hyperbolic regions of the flow elongated particles are
mostly oriented along the Lyapunov vectors (i.e., stretch-
ing direction), this results in a smaller particle density
inside the vortex. In the particular case � � 1, particles
in the chaotic region are oriented exactly in the direction of
the Lyapunov vectors, that is tangent to the elliptic region
of the flow at the boundaries; thus, particles cannot enter
from outside and the density inside the vortex goes to zero.

The accumulation of swimming microorganisms in cha-
otic regions of a fluid flow can be advantageous for fast
dispersion and for avoiding closed regions that could be-
come depleted of nutrients. Thus swimming can be an
efficient evolutionary strategy even without the complex
biological mechanisms necessary for oriented swimming
in response to external fields. It would be interesting to test
the predictions of this model in an experimental setting and
could provide for a mechanism where particles of different
shape or motility are separated.
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FIG. 4. Phase plane diagrams for (a) � � 1:0, vs � 0:01 and
(b) � � 0:9, vs � 0:1. The nullclines are shown by dashed lines,
axes represent spatial coordinates in a corotating frame.
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