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Dipolar Poisson-Boltzmann Equation: Ions and Dipoles Close to Charge Interfaces
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We present an extension to the Poisson-Boltzmann model where the dipolar features of solvent
molecules are taken explicitly into account. The formulation is derived at mean-field level and can be
extended to any order in a systematic expansion. It is applied to a two-plate system with oppositely
charged surfaces. The ion distribution and profiles in the dipolar order parameter are calculated and can

result in a large correction to the interplate pressure.
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Charged objects (ions, interfaces, and particles) im-
mersed in liquids play a central role in electrochemistry,
colloidal science, and biology ranging from electrolyte
applications, stabilization of colloidal suspensions, protein
folding and its biological activity, and even in protein
aggregation [1-5].

The most commonly used model—the Poisson-
Boltzmann model (PB) [1,3]—assumes pointlike ions im-
mersed in a continuum dielectric media and treats the
system in a mean-field approximation. The medium is
modeled by a homogeneous and isotropic dielectric con-
stant. This model is simple, elegant, and efficient. It is in
good agreement with experiments for monovalent ions up
to energies of order of kzT. However, careful measure-
ments of the forces between two charged surfaces at nano-
metric scale show strong deviation from the simple PB
picture [3]. In particular, the assumption that the contin-
uum dielectric medium is homogeneous does not take into
account the strong dielectric response of water molecules
around charges. The discrete moments of water molecules
will orient themselves close to charged ions and surfaces
giving rise to hydration shells and to hydrophobic inter-
actions, which can be measured at short distances, for
example, between two charged plates (surface force bal-
ance apparatus). These hydration phenomena are very
important in many biological processes such as protein
folding, protein crystallization, and interactions between
charged biopolymers inside the cell.

Most studies other than the PB rely on one of several
theoretical techniques. Monte Carlo (MC) [6] or
molecular dynamic (MD) [7] computer simulations take
into account the discrete nature of the dipolar molecules.
A second approach relies on liquid state theory, integral
equation, and other methods [8,9]. In simple planar
geometry the latter gives good agreement with the MC
and MD simulations. However, all these methods are
rather cumbersome and involve heavy computation
resources. In addition, they lack the simple physical
picture provided by a Poisson-Boltzmann type of
approach.
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In this Letter we propose another approach called the
dipolar Poisson-Boltzmann (DPB). Unlike the PB model
where the solution is characterized by a homogeneous
dielectric constant, in the DPB model we coarse grain the
interaction of individual ions and dipoles interacting to-
gether. This makes the DPB an analytic extension of the PB
formalism. Although it is done on a mean-field level, it
includes some aspects of the discrete nature of the dipolar
solvent molecules and how they modify the ion—solvent
interactions. We show that such corrections to the PB
treatment are important in predicting dipolar profiles close
to charged surfaces and result in a strong deviation from
their average value. Furthermore, the DPB model can, in
principle, be expanded to any desired higher order in a
systematic expansion.

Consider a system composed of N,; mobile dipoles each
with a dipolar moment p and 7 species of ions immersed in
a continuum dielectric medium with a weak dielectric
response (the justification for this system setup is elabo-
rated below), € = €, €, being the vacuum permittivity.
Each ionic species has N; ions of charge gje, j = 1,..., 1,
where e is the electron charge. In addition, the system
includes a fixed charge distribution p(r). The charge
density created by a point dipole p at point r is given by
pas(r) = —p - V8(r — ry). Thus, the total charge density is
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where r; denotes the position of dipoles of moment p; and
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where v, (r) denotes the Coulomb potential. Using a stan-
dard Hubbard-Stratonovich transformation,
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where € = €€, is the medium dielectric constant (in SI
units) and B = 1/T is the inverse temperature (where the
Boltzmann constant kg is set to unity). The fugacities of the
dipoles and ith ion species, A; and A;, respectively, are
derived from the relations: N; = )\dﬁd logZ and N; =

A5 logZ.

Assuming that each molecular dipole has a fixed mag-
nitude, |p| = py we sum now over the {p} degrees of
freedom and obtain the dipolar term in the form
Aq [ drsin(Bpy|Ve))/BpolVl.

The DPB equation is then obtained as the saddle point of
the action (3) [where we have used ¥(r) = i¢(r) to denote
the physical electrostatic potential]

—€eV?V = Z)\iqie exp(—pBg,e¥) + py(r)

+ AapoV - [(VY/IVENG(Bpol VED]  (4)

and the function G(u) = coshu/u — sinhu/u? is related to
the Langevin function L(u) = cothu —1/u by G =
(sinhu/u) L. One recognizes in (4) the usual terms of the
Poisson-Boltzmann equation (the first two terms on the
right-hand side), while the last term is the divergence of the
polarization contributing to the induced charge density.
The local polarization density (square brackets) in
Eq. (4) is the product of the dipole density, sinhu/u, and
the average dipole moment given (on a mean-field level) by
the Langevin function.

In the following we study a dipolar solvent with 1:1 salt
confined between two oppositely charged planes [10].
While the spatial variation of the dielectric constant is
pronounced near any charged surface, the dipolar contri-
bution to the osmotic pressure is much larger for two
antisymmetric plates than for equally charged ones (as
will be explained below). Choosing the charge density to
be F o for the two plates located at z = *d/2, the poten-
tial, ionic profiles and dipole density depend only on the z
coordinate perpendicular to the planes and (4) becomes

—eV'(z) = —2c,esinhBeV + gb(z + d/2)
d
—od(z—d/2) + Cdpod—z[g(ﬂpo‘l’/)], 5)
where we assume that the system is in contact with a

reservoir containing a dipolar fluid of concentration ¢,
and salt of concentration ¢, so that A; = c; and A, = c;,.

The boundary condition at the z = —d/2 charged plane
is =€V, = c;p0G(BpyV:) + o and the electric field E =
—W' is the same, for the antisymmetric system, as on the
other plane. Note that the usual Neumann boundary con-
ditions for the PB equation include now the polarization
induced surface charges. We find that for strong enough
surface charge densities, the induced charge can be sub-
stantial and corresponds to a large modification of the
standard boundary condition.

From (5) we obtain the first integral which is equivalent
to the contact theorem expression for the pressure differ-
ence Il = Py, — Py,

II= —gllf’z(z) + 2¢,T(coshBeWV — 1)
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This equation allows us to express W(z) as a function of
W' and thus solves (5) by a simple quadrature. The first two
terms in IT are the usual PB contributions, the first being
the electric field and the second the mixing entropy of the
ions. The other two terms are the specific terms of the DPB
model. The first is the enthalpic contribution related to the
orientation of the dipoles in a local electric field. The last
term is the rotational entropy of the dipoles. The pressure at
any point z is calculated with respect to the pressure
exerted by the bulk reservoir outside the plates.

Another way to interpret (5) is to write it as a PB
equation with an effective field-dependent dielectric con-
stant €(E) = €,€S"(E) replacing the € on the left-hand
side. The nonlinear dielectric response is given by

e(E) = e + Cd—é’O G(BpoE). )

For weak fields one can expand the function G to first order
and obtain the standard PB equation eTW/(z) =
2c e sinhBeV with an effective homogeneous dielectric
constant €' = € + Bc,p3/3.

This result for dielectric response of molecules with
intrinsic dipoles in dilute systems is well known. Since
we are interested in aqueous solutions, we have chosen as a
fit parameter the molecular dipole moment of water to be
po = 4.86 D (instead of the physical value p, = 1.85).
This allows us to obtain €T = 80 for € = ¢, (vacuum
permittivity) and c; = 55 M.

When the dipolar effects are strong (see below) there is a
crowding of dipoles and ions between the plates, and their
densities can reach values higher than close packing. To
avoid this problem, we can generalize our theory to take
into account the finite molecular size [11]. Assuming that
the 1:1 ions and dipoles are constrained on a lattice of
spacing a (roughly equal to their molecular size), and
imposing the condition that each site of the lattice is
occupied by only one of the three species (incompressi-
bility condition), the free energy becomes
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where ¢, + 2¢, = a~3. Minimizing the above free energy,
the modified dipolar Poisson-Boltzmann (MDPB) equation
is obtained

—eV'(z) = 08(z+ d/2) — ob(z — d/2)

capo d [G(BpoW')] _ 2cse sinhBeW
a® dz [ D } a’ D
9)

where D = ¢, sinh(Bpo¥')/BpoV' + 2c, cosh(BeW).
The presence of the denominator D in (9) leads to satura-
tion of the local ionic and dipolar densities, which is quite
important close to charged boundaries. Without the dipolar
effect py = 0, the MDPB equation reduces to the modified
PB equation which also displays an ionic saturation effect
because of solvent entropy [11].

A large deviation of the DPB treatment from the stan-
dard PB one may occur in the strong FE field regime. Such a
case is presented now by solving numerically Eq. (5) with
its boundary condition for a system composed of two
planar surfaces located at z = *d/2, with opposite surface
charge densities + o and with small amounts of 1:1 salt to
avoid strong screening effects. In this antisymmetric sys-
tem the potential at the midplane vanishes, while the
electric field there is nonzero. The DPB pressure, in turn,
deviates substantially from its corresponding PB value due
to the coupling between the dipole density and the nonzero
electric field. This is in contrast with a symmetric planar
system where the electric field vanishes at the midplane.

Had we modeled the water solvent as dipoles in vacuum
(e = €y), the dipole density in the midregion (see Fig. 1)
would have reached unphysical values above the close
packing ones, because nothing in our model prevents over-
crowding. In order to avoid this artifact we use a back-
ground of low dielectric solvent (e.g., €, = 4.5 for ether)
and treat explicitly the strong water dielectric response by
the dipolar term in the DPB Eq. (5). In this fashion the
water bulk density is lower than its close packing value,
yielding a dipole profile density which is higher than the
bulk value but below the close packing one. Note that all
other mixture enthalpic and entropic terms are not consid-
ered at present [12].

In Fig. 1 we present the DPB profiles for the dipole
density and local dielectric constant between two charged
plates with separation of d = 20 A. The figure shows a
strong accumulation of dipoles between the charged plates
leading to high effective dielectric constant. The profile of
the dipole density (dashed line) is rescaled by its bulk
value. It can be seen that in the surface vicinity (up to
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FIG. 1 (color online). The DPB rescaled dielectric constant
€(z)/ €,k and the dipole density c,(z)/c, profiles between
two oppositely charged plates at separation d = 20 A. The
surface charge density is & = Fe/50 A2. The reservoir contains
1:1 salt of concentration ¢, = 107> M and dipoles of density
¢y = 10 M. The dielectric constant is rescaled with respect to its
bulk value €y, = 18.2. The profiles have a strong variation in
the vicinity of the plates (up to 2 A) and then saturate to a value
that is somewhat higher than their bulk values.

about 2 A), the density rises to above 4 times its bulk value
due to the strong attraction with the charged surface. In the
midregion the density saturates at about 1.4 times its bulk
value. The corresponding local effective dielectric constant
(solid line in the figure) can be calculated from (7). The
profile resembles that of the dipole density. In rescaled
units, it saturates at a value of about 1.2 in the midregion
and reaches about 2.3 at the surfaces.

Compared to a PB theory with the same bulk and homo-
geneous €' taken as constant throughout the system, the
DPB demonstrates strong deviations, not only in the sur-
face proximity but also in its saturated midrange value (for
strong enough o and/or small d).

The ionic concentration is much less affected by the
presence of the dipoles. We have computed the ion den-
sities as a function of the distance to the surface. Because
of the different boundary condition the ionic density is
strongly suppressed at the surface with respect to PB (to
about half of its original value). However, it comes back to
its PB value at distances as close as 0.5 A from the surface.

In Fig. 2 we plot the relative osmotic pressure difference
(ITpgp — I pg)/Ipg as a function of the surface separation
d. The pressure is a global quantity, and is sensitive to the
strength of the electric field throughout the system rather
than to its value on the surface. As a result, IIpg deviates
strongly from Ilpg for small d, while ITppg = Ilpg at
larger separation.

We have presented an analytical modification of the PB
equation by including the dipole degrees of freedom. We
calculated the correction to the potential, electric field and
densities for a system of two oppositely charged plates

077801-3



REVIEW LETTERS

week ending
17 AUGUST 2007

PRL 99, 077801 (2007) PHYSICAL
T T T .
1.2* oF 1
£
o -1F -
= g
© 0.8 = |
= o |
Im
o
o 1 1 | |
E 0.4r -3 = - e o
d [A]
0
0 35 70 105 140

FIG. 2 (color online). The DPB calculated pressure II as a
function of the interplate separation 10 < d < 140 A for two
oppositely charged plates. All other system parameters are as in
Fig. 1. We compare the DPB with the usual PB models by
plotting their relative difference (Ilpgp — Ilpg)/Ilpg. In the
inset the DPB pressure is plotted in units of 1072k, T/A%.

(Fig. 1). The results are compared with those of the usual
PB equation with an effective dielectric constant. We find
that when the electric field is strong (poE = kgT), there are
strong deviations from the PB model. The spatial depen-
dence of the dielectric constant signals an ordering of the
dipoles at the surfaces. This spatial dependence is also a
signature of nonlinearity in the dielectric response. The
interplate pressure is sensitive to the value of the electric
field at the midplane and can deviate considerably from the
PB results for small enough separation and/or large surface
charges (Fig. 2).

The formalism presented here is general and opens up
the way to several interesting applications. Even on a
mean-field level, as used in this Letter to compute profiles
and osmotic pressure, we find large deviations from the
corresponding PB results. However, this treatment has
several limitations: it lacks correlation effects and it does
not treat correctly the finite size of ions and dipoles, whose
densities can reach unphysical high values in high E fields.
The former limitation can be removed by considering a
systematic higher-order loop expansion of the free energy,
taking into account correlation effects. The latter can be
remedied by including the hard core of ions and dipoles as
appeared in Eq. (9). It will be of interest to compare the
outcome of these refinements [12] with other models such
as hypernetted-chain and computer simulations, as they
include correlation effects and show an oscillatory density
profile in the vicinity of charged surfaces.

The results presented in this Letter can be verified
experimentally by using, for example, the surface force

balance (SFB) apparatus. Recent SFB experiments [13]
have been performed on asymmetrically charged surfaces.
The range of intersurface separations that we used can be
explored using the SFB technique. What is needed, how-
ever, are careful studies of mixtures of different dielectric
solvents in order to extract the dipole contribution to the
osmotic pressure. This systematic set of experiments may
shed light on the short-range hydrophobic effect and hy-
dration forces.
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