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We develop a new perturbative method for studying any steady states of quantum impurities, in or out of
equilibrium. We show that steady-state averages are completely fixed by basic properties of the steady-
state (Hershfield’s) density matrix along with dynamical ‘‘impurity conditions.’’ This gives the full
perturbative expansion without Feynman diagrams (matrix products instead are used), and ‘‘resums’’ into
an equilibrium average that may lend itself to numerical procedures. We calculate the universal current in
the interacting resonant level model (IRLM) at finite bias V to first order in Coulomb repulsion U for all V
and temperatures. We find that the bias, like the temperature, cuts off low-energy processes. In the IRLM,
this implies a power-law decay of the current at large V (also recently observed by Boulat and Saleur at
some finite value of U).
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Impurity models describe mesoscopic quantum objects
in contact with large conducting leads. Quantum dots are
much-studied examples, and experiments in a bias voltage
[1] lead to accurate descriptions of their nonequilibrium
steady-state properties. In impurity models, such states are
of high interest as they pose the theoretical challenge of
capturing the effect of nonequilibrium in a truly quantum
system, yet they constitute the simplest nonequilibrium
situation, where properties are time independent. At low
energies, interactions between the leads’ Landau quasipar-
ticles and the impurity occur in the s-wave channel, and the
spectrum may be linearized around the two Fermi points.
Then, the universal behavior is described by free massless
fermions on the half line (bulk conformal field theory) with
a nonconformal boundary interaction at the end point.
Many methods are known for studying equilibrium behav-
iors in such models, but understanding and accessing prop-
erties of nonequilibrium steady states is still a much harder
task. Wilson’s picture does not apply, and, for instance, the
effect of a bias on low-energy processes (which determines
the large-bias current) is still under study [2,3].

Two calculational schemes exist: the real-time
Schwinger-Keldysh formulation and the scattering-state
Lippman-Schwinger formulation. The former relies on
the infinite extent of the half line in order to absorb the
energy released by relaxation from an appropriate ‘‘unin-
teracting’’ density matrix to the steady state. It requires
relaxation mechanisms (see, e.g., [3]) whose absence may
lead to pathologies in perturbative expansions [4]. The
latter describes directly the expected end result just from
‘‘how the state looks’’ asymptotically far from the impu-
rity. Hershfield’s Y operator [5] (see also the studies
[3,6,7]) gives a ‘‘steady-state density matrix’’ that encodes
these scattering states. This is interesting, since a nonequi-
librium steady state is not described by the usual density
matrix, but it is still hard to apply to interacting systems.
Exact results for integrable models occur when the exact
quasiparticles do not mix the biased particle baths [8]. A

recent proposal [9] suggested, in the interacting resonant
level model (IRLM), a freedom in choosing the quasipar-
ticles to get around this restriction, but the construction of
Bethe ansatz eigenstates still needs justifications (for an-
other recent study of the IRLM, see [10]).

In this Letter, we develop a new method for studying
steady states in quantum impurity models from basic prop-
erties of Hershfield’s Y operator and ‘‘impurity condi-
tions.’’ Impurity conditions are part of the equations of
motion that relate local operators on both sides of the
impurity. In integrable models, they fix the scattering
matrix of Bethe ansatz, and they are used in [11] to
describe the infrared fixed point of the IRLM. We use
them to develop an efficient perturbation theory in the
scattering-state formulation. They allow us to bring chiral
fields (representing collective massless modes in the bulk)
through the impurity to the side where Hershfield’s steady-
state density matrix looks like the usual equilibrium one.
The steady-state condition is then solved iteratively in
terms of equilibrium averages, giving the full perturbative
expansion without Feynman diagrams, where the combi-
natorics is dealt with using matrices on the space of impu-
rity operators.

This is an improvement over Keldysh perturbation the-
ory—there is no special time ordering—and over other
approaches in the Lippman-Schwinger formulation—
there is no need for explicit scattering states or Y operator.
It gives full perturbative expansions with respect to mar-
ginal or marginally relevant operators, which is impossible
by standard methods. The resummed expansion is an equi-
librium average that may lend itself to numerical tech-
niques. The method is also related to ‘‘equations of
motion methods’’ [12]; physically motivated truncations
give nonperturbative results. Conceptually, the method
shows how basic properties of the steady-state density
matrix are sufficient to uniquely determine quantum aver-
ages; this may help in understanding variational ap-
proaches out of equilibrium.
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In the IRLM, we calculate the universal nonequilibrium
current for all voltages and temperatures to first order in
Coulomb repulsion U � 0 (we verify that Callan-
Symanzik equations hold). We find that large differences
between the leads’ filling energies (determined by the
voltage) and the impurity energy cut off low-energy pro-
cesses, giving a power-law decay at large voltages. Such a
decay was also observed recently at a particular nonzero
value of U [13]. We note that the Bethe ansatz eigenstates
of [9] do not satisfy our impurity conditions, except atU �
0,1 (where exact quasiparticles are free). Finally, we give
an argument to obtain the current at U � 1, and find
agreement with [9] and with free-theory expectations.

The Hamiltonian.—We use units where e � @ � 1.
The IRLM is described by a quantum field theory
Hamiltonian H � H0 �HI. H0 represents two baths of
one-dimensional free massless, spinless fermions [with
quantum fields  1�x� and  2�x�] on the half line, and HI
the interaction with the impurity, an energy level that can
be singly occupied, at the end of the half line. Since there is
no backscattering, we can ‘‘unfold’’ the two baths and get
two chiral right-moving fermions on the line. Using���

2
p
 e �  1 �  2,

���
2
p
 o �  1 �  2, the Hamiltonian is

 

H0 � �i
Z
dx� ye �x�@x e�x� �  

y
o �x�@x o�x��;

HI � t� ye �0�d� dy e�0�� �U�ne�0� � no�0��D� �dD;

(1)

where D � dyd and ne;o�x� �  ye;o�x� e;o�x�. Operators
satisfy canonical anticommutation relations f e�x�;
 ye �x0�g � f o�x�;  

y
o �x0�g � ��x� x0� and fd; dyg � 1,

d2 � �dy�2 � 0. U represents the Coulomb repulsion be-
tween the leads’ fermions and an occupied impurity, �d is
the impurity energy level, and t is the hybridization, which
essentially determines the number of current-carrying
states available. It is useful to keep in mind that in the
unfolded picture, x < 0 means before interacting with the
impurity, and x > 0 means after.

Steady states.—In quantum impurity systems, steady
states are also time-independent quantum states. They are
defined by prescribing the baths to be, at x < 0, in thermal
equilibrium at temperature T with a chemical potential V
associated to a local conserved charge Q of H0, and by
asking for time independence with respect to the dynamics
given by the full HamiltonianH. That is, quantum averages
h	 	 	i 
 Tr�� 	 	 	�=Tr��� are described by the density ma-
trix [5] � � exp���H � VY�=T�, where Y looks like Q
before interacting with the impurity
 

hO1�x1�O2�x2� 	 	 	i

�
x1<0;x2<0;... Tr�exp�� 1

T �H0 � VQ��O1�x1�O2�x2� 	 	 	�

Tr�exp�� 1
T �H0 � VQ���

;

(2)

(Oi�x� are local operators), and is conserved by the dy-

namics [14]: �H; Y� � 0. As we will see, these two prop-
erties are sufficient to uniquely characterize steady-state
averages. For our purposes, the charge Q � �N2 � N1�=2
with Ni �

R
dx yi �x� i�x� and the current J �

�i�H;Q� � tRe�idy o�0�� describe a bias voltage and
the associated particle current.

The method.— Impurity conditions: Eigenstates of H
can be constructed by linear combinations of states of the
form

R
dxdx0 	 	 	 g�x; x0; . . .� ye;o�x� 

y
e;o�x0� 	 	 	 �dy�0;1j0i

with pseudovacuum j0i,  e;o�x�j0i � 0, dj0i � 0 (a vac-
uum for both the fermionic Fock space F and the impurity
space I). The Hilbert space H comprises states up to an
energy distance � from the pseudovacuum—this repre-
sents finite leads’ bandwidths of order �, a part of our
cutoff scheme. Because of the linear spectrum in the bulk,
the first-quantized wave functions g have finite jumps at
the impurity site. Hence, hvj��x�jwi has a jump at x � 0,
where jvi; jwi 2H and ��x� is an ultralocal field (no
derivatives) at x times impurity operators. Using
�H0;��x�� � i@x��x� in hvj�H;��x��jwi, the jump is, as
an operator on H (with a < 0, b > 0)
 

��0�� ���0�� �
hvj	jwi

i
�Z b

a
dx�

Z 0�

a
dx�

Z b

0�
dx
�

� �HI;��x��: (3)

Equation (3) has ambiguities: HI contains operators at
x � 0, where there are jumps. This is an artefact of the
unphysical pointlike nature of the impurity in the model,
and is lifted by ‘‘spreading’’ it in a region around x � 0
(another part of the cutoff scheme). Equivalently, one can
‘‘resolve’’ the Hamiltonian, by only using limiting opera-
tors  e;o�0

��;  e;o�0
��. A natural symmetric resolving

[15], which we will use, is the replacements  e;o�0��
� e;o�0�� �  e;o�0���=2 (and Hermitian conjugate) in HI.
In a longer version of this work [16] we will discuss these
issues and construct the Bethe ansatz eigenstates of the
resolved Hamiltonian.

Taking, then, ��x� �  e�x� in (3) gives

 

�
1�

iU
2
D
�
 e�0

�� �

�
1�

iU
2
D
�
 e�0

�� �
jwi
�itd;

and a similar equation holds with  e �  o and t � 0.
From (3), these hold only as operators on H . However,
it can be explicitly checked on Bethe ansatz eigenstates
that they hold more generally as linear maps H ! F � I .
This is the meaning of the equality symbol above. This fact
may be due to integrability of H, and fixes the scattering
matrix of Bethe ansatz eigenstates (different from that of
[9] if U � 0, 1). It also gives ‘‘right limits’’ in terms of
‘‘left limits.’’ For instance, with u � 2iU

2i�U ,

  e�0
�� �
jwi
�itd� �1� iuD� e�0

��: (4)

Other equations are obtained from (4) by premultiplication
by d, dy and  ye �0��,  

y
e �0�� and by Hermitian conjuga-

tion and replacement e � o, t � 0. These are our impurity
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conditions; they stay valid when multiplied by local op-
erators at x � 0. What they tell us is how local operators
that are just to the right of the impurity can be brought to its
left only using the dynamics. They give for the current
J � tRe�idy o�0��� on H .

Steady-state conditions: Using impurity conditions, the
steady-state condition h�H;��x��i � 0 for x < 0 can be
written with all local operators to the left of the impurity.
We write ��x� � djO�x� for some j � 1, 2, 3, where we
denote b1 � d, b2 � dy, b3 � D. Then, we have
 

�i@xhbjO�x�i � iAjhbjO�x�i

�

��
cj �

X
i

biEi;j�0
��

�
O�x�

�
;

where Aj is t2
2 � i�d, t2

2 � i�d, t2, and cj is �t e�0��,
t ye �0��, 0 for j � 1, 2, 3, and

 Ei;j�x� �
�un�x� 0 �t ye �x�

0 �un�x� �t e�x�
itu e�x� it �u ye �x� 0

0
B@

1
CA
i;j

(5)

with n � ne � no. This is valid also with O�x�� O�x�
x1� 	 	 	O�x� xn� for x� xj < 0.

Full perturbative expansion inU: This differential equa-
tion can be integrated, choosing integration constants for a
finite limit x! �1 of hbjO�x�i:
 

hbjO�x�i� ie�Ajx
Z x

�1
dx0eAjx

0

��
cj�

X
i

biEi;j�0��
�
O�x0�

�
:

(6)

Solving (6) by iteration, with
P
ibiEi;j�0

��O�x0� in place of
bjO�x� at x! 0� and repeating, gives
 X3

j�1

hbjOj�0
��i�

X1
n�0

in�1
Z 0

�1
dx0 			dxnhc

TeAxnE�xn�			

�eAx1E�x1� . . .�xn�e
Ax0

� �O�x0� . . .�xn�i0; (7)

where A � diag�A1; A2; A3�, cT � �c1; c2; c3�, E is the ma-
trix (5), and �O � �O1;O2;O3�

T . All terms of this series are
averages of local operators strictly to the left of the impu-
rity. Hence (2) was used, and h	 	 	i0 means free equilibrium
averages like on its right-hand side. This is our main result:
we have obtained the full perturbative expansion.
Essentially, the use of impurity conditions has simplified
the combinatorics involved. For U � 0, the first iteration
gives the current in closed form, in agreement with, e.g.,
[6].

The expansion (7) can be written using path-
ordered integrals as i

R
0
�1 dxhc

TP exp�
R
x
0 dx

0��iE�x0� �
A�� �O�x�i0. This can be evaluated using appropriate
random variables instead of operators, which may
be useful for numerics. It can also be resummed
using the Baker-Campbell-Hausdorff formula,

i
R

0
�1 dxhc

Te�i�H0�iA�E�x �O�0�eiH0xi0, where E � E�0�.
This should allow a full account of the diagonal part of E
through bosonisation techniques and give a perturbative
expansion in t.

Divergencies: The expansion (7) is plagued by linear
and logarithmic divergencies as �! 1. Linear divergen-
cies [from normal ordering with respect to H0 in Ei;j�x�,
n�x�� : n�x�:, and from collisions :n�x��n�x0�: as x x0

in (7)] will be absorbed into a redefinition of �d [16].
Logarithmic divergencies are accounted for by the renor-
malization group—a good alternative regularization that
gives them is simply to ‘‘avoid’’ the impurity by changing
the upper integration limits in (7) to ���1.

Results.—We take U > 0, and that regularization. We
find the current (divergent and finite parts as �! 1)

 hJ i � m
�
Ics �U

��
Icc � Icm

@
@m

�
Ics � B

�
�O�U2�

	
;

where m � t2=2, Icc �
1
4

P
�;�0F�0; m� i�d �

0 iV=2� �
L���, Ic �

1
2

P
�F�0; 2m� iV=2� � L���, Ics �

1
4i

P
�F�m� i�d � iV=2; m� i�d � iV=2�, and

 B � mT2
Z 0

�1
dy
Z 0

y
dz
em�y�z� cos�d�y� z�

sinh�Tz
�y� z�

�

�
cosVz2 sinV�y�z�2

sinh�T�y� z�
�
y cosVz2 sinVy2 � z cosVy2 sinVz2

�y� z� sinh�Ty

�

with L��� � 1
� log2�

�T and, with  �z� � d ln��z�=dz,
F�a; b� � 1

� � �
a

2�T �
1
2� �  �

b
2�T �

1
2��.

The average current satisfies the Callan-Symanzik equa-
tion �U�m

@
@m�� @

@��hJ i � 0. This checks RG out of equi-
librium to all orders in m. It means that the scaling limit
where the bandwidth � is greater than all other scales is
taken with the parameter T1��U=��

K � m�U=� fixed (to first
order in U). This trades the microscopic coupling m for the
scale TK that characterizes the scaling limit. The renor-
malized result is as above with the replacements m �

T1��U=��
K ���U=�� and � � �, for some ‘‘perturbative

scale’’ �. Since the parameter U does not flow [10,17],
the renormalized perturbative expansion is automatically
valid for all T, V, �d, TK � �, i.e., in the universal regime.
Note that the exponent 1�U=��O�U2� is in agreement
with standard bosonisation results.

The full result is independent of�, which is only chosen
to keep perturbative coefficients finite. Then, � is the
greater of TK or any physical infrared (IR) cutoff (quanti-
ties that do not allow arbitrarily many low-energy
processes, like the temperature). It turns out that with ������������������������������������������������������������������
��� � T � TK���� � T � TK�

p
, with �� 
 jV=2� �dj,

when any of T, TK, �� is/are much larger, the first order
perturbative coefficient stays finite.

Why are the energy separations �� cutting off low-
energy processes? Recall that transfers of particles occur
around a point in space, so that by Heisenberg’s uncertainty
principle all energy scales in the leads may be involved.

PRL 99, 076806 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

076806-3



When at least one of �� is high, there cannot be many low-
energy transfers without many high-energy transfers on at
least one side of the impurity. Here we find that each side
contributes a factor of a square root to the IR cutoff. That
the voltage is a good infrared cutoff was also observed
perturbatively in the Anderson [18] and Kondo [3] models.

One implication is that the current vanishes as a
power law as V � T, TK, j�dj (see Fig. 1). At small
temperatures, V � TK � T, j�dj, we have hJ i 
1
2TK�8e

 �1=2� TK
V �
�U=���O�U2��1�O�U2��. This is explained

as follows. Observe that at U � 0, the current saturates at
large V, to a value proportional to the number of current-
carrying hybridized states, roughly m=�. According to
RG, the effect of U � 0 is that at large energies, m=�
decreases with a power law. Since V is an infrared cutoff, at
large V the system is at large energies. Note that if j�dj is
kept of the same order as V=2, the power law changes to
V��U=2��.

On the other hand, the low-T linear current, TK � T, V,
j�dj is (with �T 
 �T=TK) 2�hJ i=V  1� g2

�T2 �

g4
�T4 �O� �T6� with g2 � ��16e2 �1=2����U=��=3 and uni-

versal ratio g4=g
2
2 � 21=5�U=�, everything up to

O�U2�. The universal ratio is in agreement with IR confor-
mal perturbation theory [11].

Note that fixing TK, the current decreases as U is in-
creased, for all voltages and temperatures (see Fig. 1 for
the zero-temperature case). The fact that TK can be chosen
in such a way is universal. The opposite is observed for
finite but large enough bandwidth, finite voltage and fixed
t, in agreement with [9,10].

Physical arguments also give the current at U � 1,
where u � 2i. Here, there cannot be a fermion at x � 0
and an occupied impurity level simultaneously. Hence,
both operators dn�0��, dyn�0�� must average to zero. In
(6) (with linear divergencies substracted), this brings the
matrix E to its U � 0 form, so that the current is mIcs, in
agreement with [9].

Conclusions.—We have developed an efficient method
for studying steady states in impurity models, applied it to

the current in the IRLM, and identified the nontrivial
voltage-related quantities (��) that cut off low-energy
processes. It can be applied to any single-impurity model
with linear spectrum and with left- or right-moving sepa-
ration of the leads’ quasiparticles (where unfolding can be
done), such as Kondo and Anderson models, and impurity
models where leads are Luttinger liquids (bosonic collec-
tive modes separate). In the nonequilibrium Kondo model
with an impurity magnetic field, it may simplify the treat-
ment of the pathologic perturbative expansion [4].
Although our method may be restricted to integrable dy-
namics (this is to be clarified), it does not rely on integra-
bility of the steady state; the nonequilibrium steady states
in the Kondo and Anderson models may not be integrable.
It would be very interesting to develop efficient, out-of-
equilibrium numerical methods from the resummed per-
turbative expansion obtained here.
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156802 (2001).

[3] B. Doyon and N. Andrei, Phys. Rev. B 73, 245326
(2006).

[4] O. Parcollet and C. Hooley, Phys. Rev. B 66, 085315
(2002).

[5] S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993).
[6] A. Schiller and S. Hershfield, Phys. Rev. B 58, 14 978

(1998).
[7] J. E. Han, Phys. Rev. B 75, 125122 (2007).
[8] P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev.

Lett. 74, 3005 (1995).
[9] P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802

(2006); P. Mehta, S.-P. Chao, and N. Andrei,
arXiv:cond-mat/0703426.

[10] L. Borda, K. Vladár, and A. Zawadowski, Phys. Rev. B 75,
125107 (2007).

[11] E. Boulat and H. Saleur, arXiv:cond-mat/0703545.
[12] A. Theumann, Phys. Rev. 178, 978 (1969); J. Applebaum

and D. Penn, Phys. Rev. 188, 874 (1969); Y. Meir, N. S.
Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991).

[13] E. Boulat and H. Saleur (private communications).
[14] In order to describe a nonequilibrium steady state, Y is

expected to be a nonlocal conserved charge.
[15] Other symmetric resolvings give the same model, with

possibly different t, U, �d.
[16] B. Doyon (to be published).
[17] P. Schlottmann, Phys. Rev. B 25, 4815 (1982).
[18] A. Oguri, J. Phys. Soc. Jpn. 71, 2969 (2002).

20 40 60 80 100

V
TK

0.3

0.35

0.4

0.45

0.5 U = 0
U = 0.05
U = 0.1

U = 0.15
U = 0.2

U = 0.25

J
TK

FIG. 1. Universal current vs voltage, TK fixed, T � �d � 0. A
universal feature is the large-V decay with a U-dependent power
law. At small V, its decrease withU is not universal, and depends
on the definition of TK.
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