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We investigate the spin-orbit (SO) interaction in two-dimensional electron gases in quantum wells with
two subbands. From the 8� 8 Kane model, we derive a new intersubband-induced SO term which
resembles the functional form of the Rashba SO but is nonzero even in symmetric structures. This follows
from the distinct parity of the confined states (even or odd) which obliterates the need for asymmetric
potentials. We self-consistently calculate the new SO coupling strength for realistic wells and find it
comparable to the usual Rashba constant. Our new SO term gives rise to a nonzero ballistic spin-Hall
conductivity, which changes sign as a function of the Fermi energy ("F) and can induce an unusual
Zitterbewegung with cycloidal trajectories without magnetic fields.
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The rapidly developing field of spintronics has generated
a great deal of interest in spin-orbit (SO) coupling in
semiconductor nanostructures [1]. For an n-doped zinc-
blende semiconductor quantum well with only the lowest
subband occupied, i.e., in a strictly 2D situation, there are
two main contributions to the interaction of the spin and
orbital degrees of freedom of electrons. One contribution is
the Dresselhaus term, which results from the lack of in-
version symmetry of the underlying zinc-blende lattice [2]
and is to lowest order linear in the crystal momentum [3].
This linearity is shared by the other contribution known as
the Rashba term [4], which is due to structural inversion
asymmetry and can be tuned by an electric gate across the
well [5]. These two contributions can lead to an interesting
interplay in spintronic systems [6].

In this Letter we consider yet another type of electronic
SO coupling which, as we show, occurs in III-V (or II-VI)
zinc-blende semiconductor quantum wells with more than
one subband. We derive a new intersubband-induced SO
interaction which resembles that of the ordinary Rashba
model; however, in contrast to the latter, ours is nonzero
even in symmetric structures (Fig. 1). We self-consistently
determine the strength of this new SO coupling for realistic
single and double wells and find it comparable to the
Rashba constant [Figs. 2(a) and 2(b)]. We have investi-
gated the spin-Hall effect and the dynamics of spin-
polarized electrons due to this new SO term. We find
(i) a nonzero ballistic spin-Hall conductivity which
changes sign as a function of "F and (ii) an unusual
Zitterbewegung [7] with cycloidal trajectories without
magnetic fields (Fig. 3). As derived below, for a symmetric
well with two subbands our 4� 4 electron Hamiltonian is
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where m� is the effective mass, �	 � �"o 	 "e�=2, "e and
"o are quantized energies of the lowest (even) and first
excited (odd) subbands (corresponding to eigenstates jei
and joi), respectively, measured from the bottom of the
quantum well, �x;y;z denote the Pauli matrices describing
the subband (or pseudospin) degree of freedom, and �x;y;z

are Pauli matrices referring to the electron spin. The new
intersubband-induced SO coupling � is
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where Eg and � are the fundamental and split-off band
gaps in the well region [8], P is the Kane matrix element
[9]. The parameters �v and �� denote valence-band offsets
between the well and the barrier regions [10], V�z� is the
Hartree-type contribution to the electron potential, and
h�z� is the structural quantum-well profile [11]. Note that
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FIG. 1 (color online). Square well with its ground-state ’e�z�
and first excited-state ’o�z� wave functions. The new
intersubband-induced SO coupling � in Eq. (4) is nonzero
even in symmetric wells due to the distinct parities of ’e�z�
(even) and ’o�z� (odd), which yield a nonvanishing matrix
element for the derivative of the symmetric potential.
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� can be varied via external gates (Fig. 2). Next we outline
the derivation of H in Eq. (1).

Kane Hamiltonian.—We start from the usual 8� 8
Kane Hamiltonian describing the s-type conduction and
the p-type valence bands around the � point [12],

 H 8�8 �
Hc Hcv

Hvc Hv

� �
; (3)

where Hc is a 2� 2 diagonal matrix with elements

p2=2m0 � Vc�~r�, m0 is the bare electron mass, Hv is a 6�
6 diagonal matrix with elements p2=2m0 � Vv� ~r� � Eg for
the heavy- and light-hole bands, and p2=2m0 � V�� ~r� �
Eg �� for the split-off band, Vi� ~r� (i � c; v;�) denote
arbitrary potentials (see below), and Hcv � �Hvc�
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where ~� � P ~k, ~k � ~p=@ is the electron wave vector, k	 �
kx 	 iky, and P � �i@hSjpxjXi=m0 parametrizes the
conduction-to-valence-band coupling, jSi and jXi are the
usual periodic Bloch functions at the � point.

Effective electron Hamiltonian: Folding down.—The
Kane Hamiltonian (3) acts on an eight-component spinor
�y � � c  v �y in which the last six components  v
represent valence-band states. By eliminating the hole
components from the Schrödinger equation H 8�8� �
"�, where " is the eigenenergy, we can fold down this 8�
8 equation into a 2� 2 effective equation for the
conduction-band states only: H �"� ~ c � 
Hc �Hcv�"�
Hv�

�1Hvc� ~ c, ~ c is a renormalized conduction-electron
spinor.

SO in symmetric wells.—Applying the above procedure
to a quantum well, defined by the confining potentials [11]
Vi� ~r� ! Vi�z� � V�z� � �ih�z�, i � c; v;�, we find

 H �"� � HQW �
P2

3@2 p�
�
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2 ; pz�; (5)
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where 1=m��z; "� � �2P2=3@2��2=�1 � 1=�2� � 1=m0,
�1 � "� 
p2=2m0 � V�z� � �vh�z� � Eg� and �2 �

"� 
p2=2m0 � V�z� � ��h�z� � Eg � ��. Equation (5)
describes an electron in a quantum well (HQW term) with
spin-orbit interaction (last term) [13]. The kinetic-energy
operators above are complicated due to the position- and
energy-dependent effective mass m��z; "�. Since Eg and
Eg �� are the largest energy scales in our system, we can
simplify (5) and (6) by expanding 1=�1 and 1=�2 in the
form 1=�1 � E�1

g f1� 
"� p2=2m0 � V�z� � �vh�z��=
Eg � � � �g and 1=�2 � �Eg ����1f1� 
"� p2=2m0 �

V�z� � ��h�z��=�Eg � �� � � � �g. To zeroth order �1 �

Eg, �2 � Eg � �, and HQW � p2
k
=2m� � p2

z=2m� �
Vc�z� with (a constant effective mass) 1=m� �
�2P2=3@2�
2=Eg � 1=�Eg ���� � 1=m0 [14]. Since the
SO operator 
��1

1 � �
�1
2 ; pz� ! @z�1=�1� � @z�1=�2�,

we need to keep the first-order terms in the expansions of
��1

1 and ��1
2 which yield the leading nonzero contribution

to the SO term in (5). We find 
��1
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�1
2 ; pz� � 
1=E2

g �

1=�Eg � ��2�@zV�z� � 
�v=E2
g � ��=�Eg � ��2�@zh�z�.

Finally, we project this SO operator into the two lowest
(spin-degenerate) eigenstates jii�z � j

~kkiij�zi, h ~rj ~kkii �

exp�i ~kk � ~rk�’i�z�, i � e; o, and �z �"; # , of the symmetric
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FIG. 2 (color online). Calculated SO coupling strengths as a
function of the external gate Vb for realistic wells. (a) For the
single GaInAs [16,20] well studied, the intersubband coupling �
is larger than the Dresselhaus �i and the Rashba �i constants
(i � e; o). Note that j�ej 
 j�oj and both change sign across
Vb � 0 (in contrast to �i and �). (b) For the InSb double well
considered, � shows a ‘‘resonant behavior’’ about Vb � 0 [sym-
metric configuration, lower-left inset in (b)]. This occurs because
the subband splitting "o � "e reaches a minimum at Vb � 0 and
the double-well wave functions are very similar (though of
distinct parities) for Vb � 0. This also makes �e ���o around
Vb � 0. Upper-right inset in (b): Energy dispersions "	� ~k�
[Eq. (10)] of the symmetric double well.

FIG. 3 (color online). Zitterbewegung due to the SO coupling
� for distinct ratios 	 � ��=2"SO. Note the peculiar trajectories
with the forward injected electrons moving backward (I) and
even in a closed path (II). This follows from the SO induced
change in the curvature of the bands which renormalizes the
effective masses. Here we use 
SOk0y � 	=10, 
�1

SO � m��=@.
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well (HQW) (Fig. 1). This directly leads to the H in (1)
with the SO coupling � (2) [15]. Note that this new SO
interaction is nonzero even in symmetric wells as � arises
from the coupling between the ground state (even) and the
first excited state (odd) [Eq. (2)]. We can generalize H to
include the Rashba � and the linearized Dresselhaus � SO
couplings. Next we determine the magnitude of � (and �,
�) for realistic quantum wells with two subbands.

Self-consistent calculation of the SO couplings.—We
consider modulation-doped quantum wells similar to those
experimentally investigated in Ref. [16]. Our wells, how-
ever, have two occupied subbands. Similarly to Ref. [16],
we study cases with constant chemical potentials [17]. By
self-consistently solving Poisson and Schrödinger’s equa-
tions we determine the energy levels "e; "o and the con-
fined wave functions ’i�z�, i � e; o of the wells. We then
calculate (i) � via Eq. (2), (ii) �i from equations similar to
Eq. (2) for each subband, and (iii)�i � �chijk

2
z jii, �c is the

bulk Dresselhaus SO parameter [18]. The structural sym-
metry of the wells and their charge densities can be
changed via a gate potential Vb.

Our calculated SO couplings �, �i, and �i, i � e; o, for
an InAlAs=InGaAs=InAlAs single quantum- well (‘‘sam-
ple 3’’ in [16]) are all comparable in magnitude [Fig. 2(a)].
Note that our �e=�e ratio is consistent with the experi-
mental one in Ref. [19]. In addition, �e vs Vb here agrees
well with the experimental data in Fig. 3 (‘‘triangle up’’) of
Ref. [16] (see also Fig. 4 in [20]). Our �i [21] and �i are
also consistent with those of Ref. [22]. Note that for the
single well studied here � does not vary appreciably with
the gate Vb, similarly to �i and as opposed to �i.

For a double-well structure, on the other hand, we find
that � has a ‘‘resonant behavior,’’ changing by about an
order of magnitude as Vb is swept across Vb � 0 [Fig. 2(b)]
(this may have a dramatic effect on Shubnikov–de Haas
measurements). Vb � 0 corresponds to a fully symmetric
double well. In contrast to the single-well case, �e and �o
have opposite signs and undergo abrupt changes in magni-
tudes near Vb � 0 [Fig. 2(b), dashed lines]. Similarly to the
single-well case, �e and �o are also essentially constant
for a double well [Fig. 2(b), dotted lines]. A detailed
account of our results will be presented elsewhere.
Having established that the new SO coupling � is sizable,
in what follows we focus on a fully symmetric well to
investigate physical effects arising solely from �.

Fully symmetric case: Eigensolutions.—Let us consider
a two-subband well (single or double) described by the
Hamiltonian H in (1) (we assume a negligible
Dresselhaus term [19]). In the basis fjei"; joi#; joi"; jei#g
H becomes

 

~H �

"2k2

2m� � "e �i�k� 0 0

i�k�
"2k2

2m� � "o 0 0

0 0 "2k2

2m� � "o �i�k�
0 0 i�k�

"2k2

2m� � "e

0
BBBB@

1
CCCCA:

(7)

Both the upper-left (U) and lower-right (L) blocks of ~H
have eigenvalues

 "	� ~k� � �k 	 @�; (8)

with �k � @
2k2=2m� � ��, �@��2 � �2k2 � �2

�, and ei-
genvectors

 j 1i
U
� � sin��=2�jei" � cos��=2�ei
joi#; (9)

 j 2i
L
� � cos��=2�joi" � sin��=2�ei
jei#; (10)

 j 3i
U
� � cos��=2�jei" � sin��=2�ei
joi#; (11)

 j 4i
L
� � sin��=2�joi" � cos��=2�ei
jei#: (12)

Here, ei
 � ��ky � ikx�=k, cos��� � 1=
�����������������������������
1� ��k=���

2
p

,

and ~k � k�sin
;� cos
� (here we drop the ‘‘k’’ in ~kk).
For �k� 2�� we can expand "	� ~k� in (8) and define
effective masses m�	 � m�=
1	 2"SO=���, where "SO �
�2m�=2@2 is the energy scale of the new SO coupling. For
the double well of Fig. 2(b), m�� is reduced by �5%
compared to the bulk value m�. This could be measured
via, e.g., cyclotron-resonance experiments [23].

Novel Zitterbewegung.— The dynamics of electron
wave packets in wells with SO interaction exhibit an
oscillatory motion [7]—the Zitterbewegung. For our new
SO interaction, a wave packet j�i moves according to
h�j ~rH�t�j�i where ~rH�t� � Uy ~rU is the position operator
in the Heisenberg picture [U � exp��iH t="�] with com-
ponents
 

xH�t� � 1 � 1x�0� � 1 � 1
px
m�

t�
�
@
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�
�

2�@��2

�
���y � �y �

�
@
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�

� 
cos�2�t� � 1� �
�

2�@��3

�
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��x � �y

� ��
�
@
�z � 1px �

�
�
@

�
2
py�

x � �px�
y � py�

x�

�

� 
sin�2�t� � 2�t�; (13)

and yH�t�, obtained from Eq. (13) via the replacements
�px; �

x�� �py; �
y�, �py; �y�� ��px;��

x� (i.e., a �=2
rotation about the z axis). Similar expressions can be
derived for the spin components �iH�t�, i � x; y; z [24].

For simplicity, we evaluate the expectation value of
~rH�t� for planes waves (‘‘wide wave packets’’). For a
spin-up electron injected into the lowest subband along
the y axis with (group) velocity ~vg � �@k0y=m

��ŷ, we find

 hxH�t�i �
�2k0y

2�@��2

1� cos�2�t��; (14)

 hyH�t�i �
@k0y

m�
t�

�2k0y��
2�@��3


sin�2�t� � 2�t�; (15)

assuming x�0� � y�0� � 0. Equations (14) and (15) show
that cycloidal motion is possible in our system. This differs
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qualitatively from the Rashba SO Zitterbewegung which is
always perpendicular to the initial ~vg.

Figure 3 shows trajectories for three distinct
~vg � �@k0y=m

��ŷ—all with k0y > 0. We find motion op-
posite to and along the y axis (orbits I and III, respectively)
and even a closed path (II). To understand this behavior we
note that for �k0y � "o � "e the linear-in-t terms in
hyH�t�i can be recast into @k0yt=m

�
� ) the injected wave

moves with the renormalized velocity v�g � @k0y=m
�
�.

Hence, for orbit I, 	< 1) m�� < 0 [25] and v�g < 0, for
orbit II, 	 � 1) m�� ! 1 and v�g � 0, and for orbit III,
	> 1) m�� > 0 and v�g > 0. Though remarkable, we
stress that the orbits I and II occur for unusual parameters
(e.g., "F < "SO=10). However, these orbits do show that
our SO Hamiltonian has a physical mechanism allowing
for cyclotronic motion without magnetic fields.

Spin-Hall conductivity �zxy.—The spin-Hall effect is a
convenient probe for SO effects in wells [26]. We have
calculated �zxy (‘‘clean limit’’) in the presence of an exter-
nal magnetic field B by following the approach of Rashba
[27], which allows us to properly account for both the
intrabranch and interbranch contributions in the Kubo
formula [28]. Here we focus on the B! 0 limit where
we find �zxy � 0 for "F > "o (two subbands occupied) and

 �zxy �
e

8�

�
1

�1

�
1

�3
� 2

�
�
�2 � �1=2

2�3
3

�
(16)

for "e < "F < "o (upper subband empty), where

�1 � 2"SO=��, �2 � �"F � ���=2��, and �3 ������������������������������������������
�2

1=4� �1�2 � 1=4
q

. Note that �zxy is nonzero and non-
universal in this range, shows a discontinuity at "F � "o,
and changes sign as a function of "F. Details of our
calculation of �zxy and a thorough discussion will be pre-
sented elsewhere [29]. Here we just note that measure-
ments of �zxy (versus "F) in symmetric two-subband wells
offer a possibility to probe our new SO interaction [26].
Note that the Rashba and the linearized Dresselhaus spin-
Hall conductivities are identically zero in the dc limit
[27,30].

We have introduced an intersubband-induced SO inter-
action in quantum wells with two subbands. The corre-
sponding SO coupling � (whose magnitude is similar to
Rashba coupling) is nonzero even in symmetric wells. This
new SO interaction gives rise to a nonzero spin-Hall con-
ductivity, renormalizes the bulk mass by�5% (measurable
via cyclotron resonance [23]) in double wells, and can
induce a cycloidal Zitterbewegung. Weak antilocalization
[20,31] should offer another possibility to measure �.

We thank S. Erlingsson, D. S. Saraga, D. Bulaev,
J. Lehmann, M. Duckheim, L. Viveiros, G. J. Ferreira, R.
Calsaverini, and E. Rashba for useful discussions. This
work was supported by the Swiss NSF, the NCCR
Nanoscience, DARPA, ONR, CNPq, FAPESP, DFG via
SFB 689, and U.S.A. NSF PHY99-07949.

[1] Semiconductor Spintronics and Quantum Computation,
edited by D. D. Awschalom, D. Loss, and N. Samarth
(Springer, Berlin, 2002); I. Zutic et al., Rev. Mod. Phys.
76, 323 (2004).

[2] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[3] M. I. Dyakonov and V. Y. Kachorovskii, Sov. Phys.

Semicond. 20, 110 (1986); G. Bastard and R. Ferreira,
Surf. Sci. 267, 335 (1992).

[4] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039
(1984).

[5] G. Engels et al., Phys. Rev. B 55, R1958 (1997); J. Nitta
et al., Phys. Rev. Lett. 78, 1335 (1997).

[6] J. Schliemann et al., Phys. Rev. Lett. 90, 146801 (2003);
M. Trushin and J. Schliemann, Phys. Rev. B 75, 155323
(2007).

[7] J. Schliemann et al., Phys. Rev. Lett. 94, 206801
(2005).

[8] I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001).
[9] E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

[10] Note that �v � Ebg � Eg � �c and �� � �v � �b ��,
where Ebg and �b are, respectively, the fundamental and
split-off band gaps in the barriers and �c the conduction-
band potential offset [see, e.g., P. Pfeffer and W.
Zawadzki, Phys. Rev. B 68, 035315 (2003)].

[11] R. Lassnig, Phys. Rev. B 31, 8076 (1985).
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