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For the superheated Lennard-Jones liquid, the free energy of forming a bubble with a given particle
number and volume is calculated using density-functional theory. As conjectured, a consequence of
known properties of the critical cavity [S. N. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10 224
(2003)], the free energy surface terminates at a locus of instability. These stability limits reside, however,
unexpectedly close to the saddle point. A new picture of homogeneous bubble nucleation and growth
emerges from our study, being more appropriately described as an ‘‘activated instability.’’
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Homogeneous bubble nucleation is the activated process
by which the vapor phase is formed from a bulk super-
heated liquid in the absence of impurities or solid surfaces
[1]. According to classical nucleation theory (CNT) [1], if
an embryo of the vapor phase is less than some critically
sized bubble, the embryo collapses back into the super-
heated liquid; if the embryo exceeds this critical size, the
bubble grows to macroscopic size. Within CNT, the homo-
geneous nucleation rate is expressed in terms of the free
energy, or reversible work, of forming embryos of various
sizes. Since the vapor embryo is compressible, the free
energy of formation is usually expressed as a function of
the radius and internal pressure (or equivalently the num-
ber of particles n) of the (spherical) bubble [1,2]. The
critical bubble then corresponds to the saddle point in
free energy space: a maximum in the radius and a mini-
mum in the internal pressure (or n). In addition, the free
energy surface continues on indefinitely beyond the saddle
point, serving to channel the embryo toward the lower
lying minimum corresponding to the bulk vapor phase
(e.g., Fig. 4 of Ref. [2]). Though this subsequent growth
of nuclei may be rapid, the post-critical embryos never-
theless follow well-defined pathways that describe the
reversible change of n and radii. In obtaining an expression
for the nucleation rate, CNT also invokes another feature of
the free energy surface, namely, that the region about the
saddle point is sharply peaked [1]. Hence, only a small area
centered about the saddle point describes the most likely
transition paths between a precritical embryo and the vapor
phase.

Recently, Punnathanam and Corti [3,4] focused on the
relevance of cavities to bubble nucleation (a cavity is a
spherical region devoid of particle centers), where density-
functional theory (DFT) was employed to study cavity
formation within the superheated Lennard-Jones (LJ) liq-
uid [4]. For cavity radii less than some critical size, the
superheated liquid was found to be stable (DFT yielded
convergent liquidlike density profiles around the cavity).
Beyond this critical cavity size, the superheated liquid
became unstable (no convergent liquidlike density profile

was obtained). Molecular simulation verified the existence
of the critical cavity [3]. A stability analysis revealed that
the lowest eigenvalue of the matrix generated from the
second-functional derivative of the grand potential went
to zero at the critical cavity size [4], indicating that the
critical cavity represents a true thermodynamic limit of
stability. Also, the radius of the critical cavity �c was found
to be a lower bound to the radius of the critical bubble, and
the work of forming the critical cavityWc was found to be a
tight upper bound to the work of forming the critical bubble
Wb [4]. These results suggest that cavities play an impor-
tant role in the process of bubble nucleation, a conclusion
that is not inconsistent with the apparent dominant role that
cavities play in the initial stages of phase transitions in
liquids as seen in previous molecular simulation studies [5].

Specifically, the existence of a critical cavity necessarily
implies that the free energy surface W�n; v� of bubble
formation, where n is the number of particles inside a
bubble of volume v, is very different from what follows
from CNT [2]. The critical cavity, or terminus of the n � 0
profile, should be in a sense ‘‘felt’’ throughout W�n; v�. In
other words, we suspect that a limit of stability will be
reached for each n, with the radius of the bubble at this
stability limit increasing with an increase in n. For small n,
W at the limit of stability should decrease with an increase
in n (because Wc >Wb). Along n � n�, where n� is the
number of particles inside the critical bubble, a maximum
of W with respect to vwill appear before the stability limit
is reached, since the critical bubble corresponds to a saddle
point. For some n in between n � 0 (where no maximum
appears [3]) and n � n�, other maxima should also develop
before limits of stability are reached. Since the stability
limits near the saddle point are located after maxima
(beyond the barrier), they may be irrelevant to the early
stages of bubble nucleation.

This conjectured view of the free energy surface is
different from previous constructions of the bubble surface
and offers a new and intriguing picture of the molecular
mechanism of bubble nucleation. For one, a locus of in-
stability appears, describing the values of n and v at which
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the free energy surface terminates; W�n; v� no longer con-
tinues on indefinitely toward the vapor phase. The growth
of bubbles beyond this locus of instability should follow,
by definition, a mechanism appropriate for unstable fluids.
Consequently, bubble nucleation and growth is better de-
scribed as an ‘‘activated instability’’: embryos surmount a
free energy barrier only to initiate an instability. Interesting
effects may arise if the stability limits run near to the saddle
point. Since Wc is a tight upper bound to Wb, and no
maximum appears for n � 0, embryos may likely follow
trajectories that bypass the saddle and reach a limit of
stability without having traversed a maximum.

To test the above conjecture, at least for the pure com-
ponent LJ liquid (with the potential truncated and shifted at

4� [4], where � is the LJ diameter), we construct W�n; v�
via DFT, modified to obtain the separate density profiles
that develop inside and outside a given volume v, with the
number of particles n inside v held fixed. The bubble
density profile is labeled as �in� ~r1�, while the density
profile of the liquid surrounding the bubble is �out�~r2�.
With a spherical bubble of radius � centered at the origin,
~r1 is defined for 0 � j ~r1j � � and ~r2 is defined for j ~r2j �
�. The constraint of fixed particle number, n �R
�in� ~r1�d~r1, is imposed using a Lagrange mulitplier �

[6]. Invoking the local density and random phase approx-
imations [7], the grand potential � of the system is given
by
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fh is the Helmholtz free energy density of the reference hard sphere fluid and�2 is the attractive part of the LJ potential via
Weeks, Chandler, and Anderson [8]. Since n is fixed, the chemical potential � of the bulk liquid is only imposed on the
region exterior to the bubble. The reversible work of removing n particles from the bulk liquid is equal to n� [9] and
ensures that the work of bubble formation, W�n; v� � �
�0, is accounted for properly, where �0 is the grand potential
of the uniform liquid. The equilibrium density profiles are found from the two functional derivatives of Eq. (1) with respect
to �in and �out, respectively, which when each is set to zero yield
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where k is Boltzmann’s constant, � is the de Broglie
wavelength, and �ex

h is the excess chemical potential of
the hard sphere fluid (whose diameter is chosen as in
Ref. [4]).

A plot of W�n; v� versus � for different values of n at a
temperature of kT=� � 0:8 (� is the LJ well depth) and a
bulk density of �b�3 � 0:8 is provided in Fig. 1. As
anticipated, each n profile terminates at a limit of stability,
�sl (for � > �sl, �out did not converge to a liquidlike
density profile), with �sl increasing with an increase in n.
�sl was also shown to coincide with the vanishing of the
lowest eigenvalue of the matrix generated from the second-
functional derivative of � with respect to �out, verifying
that each �sl corresponds to a true thermodynamic limit of
stability. (Since n is fixed and the surrounding liquid does
not impose its chemical potential on the bubble, only the
stability of the surrounding metastable liquid need be
considered; i.e., only the curvature of � with respect to

variations in �out is evaluated.) Furthermore, as n in-
creases, maxima develop in the work profiles (the minima
correspond to bubble densities for which n=v � �b).
Surprisingly, limits of stability appear just beyond these
maxima. In Fig. 1, the saddle point is located at n� � 10
and � � 3:78�, corresponding to Wb=� � 68:66. Using
the standard DFT approach [7], which is based on a single
density profile and can only locate the saddle point, the
work of forming the critical bubble is Wb=� � 68:66. In
Fig. 2, the density profile of the critical bubble obtained
from standard DFT is compared with �in and �out at the
saddle point in Fig. 1. Taken together, �in and �out yield a
density profile that is nearly indistinguishable from the
previous result, suggesting that our modified DFT relations
generate a physically meaningful free energy surface con-
sistent with other studies of bubble nucleation.

Two striking, and newly predicted, features of Fig. 1 as
compared with CNT [2] are (1) the appearance of a locus of
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instability and (2) the proximity of this locus to the
saddle point (stability limits appear just beyond the saddle
point). In addition, Wc ( � 69:47�) slightly exceeds Wb
( � 68:66�). All of these aspects of the free energy surface
are clearly seen in the three-dimensional view provided in
Fig. 3, where beyond the locus of instability no stable
representation of W�n; v� exists. Figures 1 and 3 suggest
that bubble nucleation and growth is more aptly described
as an ‘‘activated instability.’’ An embryo must still over-

come a free energy barrier before reaching the locus of
instability, where it causes the metastable liquid to become
unstable. Further growth of the embryo is spontaneous, not
because the free energy surface rapidly channels the bubble
toward the much lower lying free energy minimum (the
bulk vapor), but given that growth beyond the stability
limit proceeds via a mechanism appropriate for phase
separations in unstable systems. Since Wc exceeds Wb by
only 1:01 kT, Fig. 3 also suggests that embryos will reach a
limit of stability not only by traversing the free energy
barrier at the saddle point, but by following trajectories that

FIG. 2 (color online). The bubble and surrounding liquid den-
sity profiles, relative to the bulk density �b, for the saddle point
in Fig. 1.
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FIG. 3 (color online). Three-dimensional view of W�n=v�
given in Fig. 1.

FIG. 4 (color online). The reversible work W of forming a
bubble within the superheated LJ liquid at kT=� � 0:8
and P�3=" � 
0:329 obtained from isothermal-isobaric
Monte Carlo simulations (at the spinodal and binodal, P�3="
are ’ 
0:600 and ’ 0:006 17, respectively [11]). W at the limits
of stability for n � 0 and n � 2 (which do not exhibit maxima)
are �52:9 and �52:1 kT, respectively, while at the maxima for
n � 5, n � 10, and n � 15, W � 52:6, �52:7, and �52:8 kT,
respectively. The saddle point resides around n � 5.

FIG. 1 (color online). The reversible work W of forming a
bubble with a given particle number n and radius � within the
superheated LJ liquid at kT=" � 0:8 and �b�3 � 0:7 (�b�3 at
the spinodal and binodal are 0.647 and 0.855, respectively). The
saddle point is located at n � 10, �=� � 3:78, and Wb=" �
68:66.
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terminate at the locus of instability for n < n� (barrier
crossings away from the saddle have been considered
before [10]). Cavities, as well as small particle bubbles,
may therefore play an important role in the initial stages of
the liquid-to-vapor transition, a conclusion not inconsistent
with the simulation studies of bubble nucleation performed
in Refs. [5]. A similar result holds for n > n� where, for
example, the maximum value of W for n � 30 is only
� 0:04 kT greater than Wb.

To verify the key aspects of Figs. 1 and 3, we performed
isothermal-isobaric Monte Carlo simulations to calculate
W�n; v� for the same LJ superheated liquid at kT=� � 0:8
and a pressure of P�3=� � 
0:329 (the average bulk
density is �b�3 � 0:735; work profiles were constructed
using the method described in Ref. [3]). The simulation
results shown in Fig. 4 confirm that a stability limit is
reached for each n, whereby the liquid density far from
the bubble surface could not be maintained at its bulk value
upon a further increase in the radius [3]. In addition, the
limits of stability for n � 5 and n � 10 appear just beyond
each maxima of W. The saddle point appears to reside
around n � 5, which is consistent with the DFT
predictions.

In conclusion, a new picture of homogeneous bubble
nucleation and growth emerges from our DFT and simula-
tion studies. In particular, a locus of instability appears on
the free energy surface for bubble formation, suggesting
that nucleation and growth is more appropriately viewed as
an ‘‘activated instability.’’ One suspects that limits of
stability will arise at other superheated liquid state points
(beyond the one condition studied here). Whether these
loci of instability also reside close to the saddle point
remains to be seen. Although the emerging view of the
molecular-level details of nucleation and growth are quite
different from what was previously thought, one may
wonder why such differences have not been noted already.
For one, the overall picture, or the net effect of bubble
nucleation (at least as seen from a coarse-grained or meso-
scopic scale), has not drastically changed. Vapor embryos
still ‘‘see’’ a free energy barrier that must be surmounted.
Hence, the limits of stability should be irrelevant to the
early stages of nucleation, when the initial distribution of
embryos is just forming, and a nucleation rate should still
be expressible in terms of a barrier height. Once a stability
limit is reached, the growth of the bubble should proceed
quite rapidly, although now via some mechanism suitable
for an unstable fluid. The prediction of an unstable growth
phase is intriguing and certainly unexpected. (This detail of
the process is clearly what differs from the previous de-
scription of bubble nucleation and growth, and future work
is directed towards identifying a corresponding signature

of such an unstable growth phase.) Yet, we note that the
bubble should trigger a ‘‘local instability’’ as opposed to
the ‘‘global instability’’ that develops upon entering the
spinodal region, where phase separation occurs by spinodal
decomposition [1]. Within the spinodal region, the entire
uniform liquid is unstable. In contrast, the instability gen-
erated by the bubble is a consequence of an inhomogeneity
that propagates only a finite distance within the liquid.
Thus, far from the bubble another uniform portion of the
liquid, which is metastable and so thermodynamically
stable, should be unaware of the instability just initiated.
Upon reaching a stability limit the bubble creates a local
instability, spontaneously growing thereafter, but without
affecting the intrinsic stability of other regions of the
superheated liquid. Consequently, many widely separated
bubbles can grow to macroscopic size and eventually
coalesce, a scenario not different from what is already
seen to occur. Of course, additional investigations are
needed to verify the growth of bubbles due to local insta-
bilities, elucidate further the molecular-based mechanisms
by which this stage of the liquid-to-vapor transition tran-
spires, as well as determine quantitatively how the kinetics
of bubble nucleation and growth should differ when mod-
eled as an activated instability.
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