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Momentum Transport from Current-Driven Reconnection in the Reversed Field Pinch

F. Ebrahimi, V. V. Mirnov, S. C. Prager, and C.R. Sovinec

Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, and University of Wisconsin—Madison,
Madison, Wisconsin 53706, USA
(Received 15 June 2006; published 16 August 2007)

We calculate momentum transport from tearing fluctuations in a reversed field pinch with sheared flow,
considering both the effect of a single tearing mode (through quasilinear theory and MHD computation)
and multiple tearing modes (through nonlinear MHD computation). A single tearing mode transports
momentum, via Maxwell and Reynolds stresses, more rapidly than classical viscous forces. Moreover, the
transport is enhanced by nonlinear coupling of multiple modes.
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Toroidal plasmas are often observed to rotate in the
toroidal direction, in both astrophysical and laboratory
settings. It is also observed in both venues that the toroidal
angular momentum can be rapidly transported in the radial
direction. For example, in accretion disks surrounding
black holes, as particles fall radially in toward the black
hole, angular momentum is transported radially outward.
That is, such transport is needed to maintain a Keplerian
rotation profile as individual particles gain momentum
from inward motion. In the toroidal laboratory configura-
tion of the reversed field pinch (RFP), rapid momentum
transport occurs as a flattening of the radial profile of the
toroidal rotation during a reconnection event [1]. In both
cases, momentum transport is faster than can be explained
by collisional viscosity. Also, for both cases the leading
explanations of momentum transport are stresses (Maxwell
and Reynolds) arising from MHD instabilities: a flow-
driven instability for accretion disks (e.g., [2,3]) and a
current-driven instability for the RFP.

In this Letter, we examine theoretically the laboratory
example of momentum transport from current-driven re-
connection, a process possibly also relevant to astrophys-
ical plasmas. In the RFP, the dominant instabilities are
resistive tearing modes, nonlinearly coupled to each other.
Coupling between three tearing modes with different wave
numbers can produce localized torques that transport mo-
mentum. This notion was introduced previously through
analysis of the ideal MHD equations away from the reso-
nant surfaces [4,5].

To elucidate the physics of the torques, we perform three
sets of calculations, of increasing completeness. Each
treats an RFP plasma with sub-Alfvenic flow. First, we
examine torques arising from a single tearing mode in the
linear regime. The torques are localized to the reconnec-
tion layer. We display the analytic solutions for the
Maxwell and Reynolds stresses from quasilinear theory
and from computational solution of the exact linearized
equations. Linear theory provides the spatial structure of
the stresses, which proves to be very similar to that in the
nonlinear regime. Second, we compute the stresses for the
full nonlinear evolution of a single tearing mode, which
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yields a momentum transport rate 1000 times faster than
that due to classical viscosity. Third, we compute the
complete case of multiple, nonlinearly coupled tearing
modes. Comparison to the single nonlinear mode reveals
the important additional effects from nonlinear coupling.
The torques are strengthened. The effect of multiple tear-
ing modes is not merely the superposition of independent,
radially separated effects. Rather, the torque arising from
the stress of one spatial mode (among many) is itself
increased by the presence of other modes. For example,
the phase between the current density and magnetic field of
a specific mode is altered (from the case of one mode only)
so as to increase the Maxwell stress.

We first calculate the quasilinear torque arising from a
single tearing mode. Linear tearing modes with equilib-
rium flows [6—8], including shear [9-13], have been
studied previously in a slab. Here, we concentrate on the
torque and employ a cylindrical plasma with equilibrium
helical magnetic field (azimuthal and axial) and axial flow.
The assumed flow V_(r) is weak, and only negligibly
destabilizing due to its shear dV,/dr [10,12]. We solve
for the eigenfunctions in the resistive, reconnection layer
(which is smaller than the island width) and in the ideal,
outer regions, from which we construct the Lorentz force
(J X B, where tilde denotes perturbations) arising from the
Maxwell stress and the fluid force arising from the
Reynolds stress (pV - VV). For a force-free equilibrium
with perturbations of the form a(r) exp(yt + im6 — ik.z),
the linearized resistive MHD equations are

py* €+ py(Vo - V)E+ py(é- V)V,
=(VXB)XB+JXB-Vp, (1)

p+1/y(Vo-V)p=—(§-Vp) =I'pV - ¢

B— 7n/yV2B =V X (£ XB)+ 1/yV X (V, X B).

We adopt tearing ordering [14] y < 735,y — €, n — €,

(r — r,) — €*x, where r, denotes the resonant surface

(kjj = 0) and € is a small parameter. We assume g = k -

Vo = —k_,V, vanishes at r = r, and varies linearly with x

in the inner region, g = g’(r,)x. We consider a small
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equilibrium flow of order Vo = n'/° [g = (k* Vo), \x —
€’]. Expanding the displacement and magnetic field per-
turbations in powers of €, as in [14], the inner layer
equations for the magnetic field (radial and parallel), and
the displacement with flow shear become
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where equilibrium quantities are defined at the resonant
surface, and k| B|, = mB?/rB.. The equations reduce to
those of a slab [10—12] when the curvature [last term of
Eq. (3)] is zero. We use the flow shear ordering for the
parallel magnetic field and displacement,
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B, = B, +iG'B,
where G' = (9r/Q%)'%¢!, Qp = (nm*qB5/prig")'?,
f(rzc);’ and Bg‘G) are the first order solutions with flow shear.
From this expansion, we obtain first order solutions at the
low resistivity limit in terms of the zeroth order solutions
(solutions without flow shear, expressible as a sum of
Hermite functions) and we construct the axial Maxwell
stress term [(J X B), = (1/r){rB,B.)', where () denotes
flux surface averaged]. Note that the Lorentz force without
flow vanishes due to a 90° phase shift between ng and
BY.

Using the parallel displacement,
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we construct the Reynolds stress [(V - VV), = (y?/r) X
(re? gg,o)y] using an expansion similar to Eq. (5).
Expressing the first order solutions in terms of shear
flow, the Lorentz force and the Reynolds stress are calcu-
lated for the inner layer region and shown in Fig. 1. The
solutions are localized around resonant surface and radially
integrate to zero. Thus, these structures transport momen-
tum to reduce the flow gradient while conserving the total
momentum in the plasma. The radial width is determined
by the resistive layer width, unrelated to the width of the
resulting magnetic island. It can be shown that both the
Lorentz and fluid stress terms are small in the outer region.
Therefore, momentum transport occurs mainly in the inner
layer.

The approximate analytic quasilinear results are consis-
tent with computational solution of the full MHD equa-
tions in the linear regime, which we perform using the
DEBS code [15]. The equilibrium field and flow are chosen
to be identical to those of the analytical calculations. Also
equivalent to the analytic calculations, the computations
are performed in the nonviscous regime, P, <
0.4S 2 AL FI=25p1/5 [16], with P,, = v/n = 0.01,
where v and P,, are viscosity and the magnetic Prandtl
number, respectively. Figure 2(a) shows the fluid stress
term (V - VV), and Lorentz term (J X B), during the linear
growth phase. The stresses are localized and similar in
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FIG. 1. The analytical quasilinear inner layer solutions for
(a) the axial fluid stress —(V - VV), and (b) the axial Lorentz
force (J X E}z. The origin is the location of the resonant surface.
The solutions are for the core tearing mode, m = 1 and k, = 2.0,
with an equilibrium current A = J;/B = Ao(1 — r*) (A = 3.2
and @ =3, S = 10* , A’ = 6.1). The small oscillations are an
artifact of the Hermite series truncation.

075003-2



PRL 99, 075003 (2007) PHYSICAL

REVIEW LETTERS

week ending
17 AUGUST 2007

0.010[ T T T T ]
[ _ =<V -v U>]
0.005 F —— <J x 8>z ]

0.000 f
—0.005 |

—o0.010F

—0.015L
0.0 . . 0.6 0.8 1.0

0.006 T i
oost (b) | E

004 E :

003 F

ooz E

001 F

© 00000

[e]e]e]

—0.001 L 1l
0.0 0.2 O.4 o.6

FIG. 2. (a) Axial fluid stress —(V - VV). and axial Lorentz
force (J X E}Z from linear single mode computations (p = 1);
(b) radial structure of cos(8), where & is the phase between B,
and B} with P,, = 0.01 [(J X B) =1[r|B_||B,|cos(8)]']. The
vertical line denotes the location of the resonant surface.

radial structures to the analytic solutions. Differences in
detail likely arise from the constant ¢ approximation of the
analytics, not true for computation. Both computation and
quasilinear calculations yield a fluid stress 5 times larger
than the Maxwell stress [Figs. 1 and 2(a)]. The nonzero
contribution of (J X B), arises from the phase between B,
and l?z around the resonant surface [Fig. 2(b)].

To examine the nonlinear evolution of a single mode (as
well as the multimode case), we again employ the DEBS
code [15], but with an ad hoc momentum source F(r)
added to the momentum equation. The source is added to
generate flow. The transport is then determined by plasma
fluctuations. The effect of the forces on the flow during the
nonlinear phase of a single mode computation with P,, =
0.01 is shown in Fig. 3. The flow profile is flattened around
the resonant surface, as for the analytical calculations. The
flow flattens very rapidly, in about 1000th of a viscous
diffusion time (or 0.05 resistive diffusion times). Separate
computation in which the flow is chosen to be dominantly
perpendicular or dominantly parallel (to the equilibrium
field) reveals that both flows are flattened similarly.

Computation with multiple tearing modes, as occurs in
the RFP, reveals the additional effects of nonlinear mode
coupling. The simulation is begun with F(r) = 0 (with
S =5x10*% P, = 10, aspect ratio R/a = 1.66 and ra-
dial, azimuthal, and axial resolutions n, = 200, ny = 16,
and n, = 128, respectively). After reaching a quasistation-
ary RFP state, F(r) is switched on at 7/7 = 0.085 with a
profile F(r) = const. The radial structure of the force is
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FIG. 3. Radial profile of axial flow (averaged over axial and
azimuthal directions) for a single mode in its initial state (dashed
line) and nonlinear state (solid line).

such that the axial flow profile would become parabolic in
the absence of fluctuation-induced stresses. The tearing
fluctuations undergo a repetitive sawtooth cycle, as shown
in Fig. 4(a). After the force is applied the flow builds,
saturating at V, = 0.06V, [Fig. 4(b)]. However, the flow
is strongly influenced by the sawtooth oscillations of the
fluctuations. Flow profiles for two times, #; and f,, are
shown in Fig. 4(b). As is seen, the flow becomes flatter
in the core at time 7, when fluctuations are large. The
flattening arises from the Lorentz force from tearing fluc-
tuations, shown in Fig. 5(a) for time #,. The Reynolds stress
is small since the flow fluctuations are reduced by viscos-
ity. The Lorentz force arises from multiple tearing modes,
as shown in Fig. 5(b) for core-resonant m = 1 modes and
the edge-resonant m = 0 mode.

The observed momentum transport is much more rapid
than would occur without fluctuations. The time scale for
flattening is about one-tenth of the viscous diffusion time.
Moreover, this comparison understates the effect of the
tearing stresses. To isolate the effect of the tearing modes,
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FIG. 4. (a) Total volume integrated magnetic fluctuations

\/1/2 [ BZdv versus time. (b) Plasma flow profiles for times 7,

and 1,.
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FIG. 5. Radial structure of (a) total (J X B). force (summed
over all n and m mode numbers), (b) (J X B). force for a subset
of individual modes [with (m, n) = (1, —3), (1, —4), (0, 1)] for
time ZZ/TR =0.112.

we have performed a computation in which the modes are
turned off at #;, immediately before the onset of the
momentum-flattening reconnection event. We observe
that the flow profile peaks due to the modest dominance
of the ad hoc force over viscous diffusion. Thus, the flat-
tening dominantly occurs from the tearing stresses. The
exception is the edge, where the torques localized at about
r/a = 0.92 [Fig. 5(a)] are countered by viscous torques
arising near the no-slip boundary. The radial width of the
Lorentz forces is substantially larger than that of a single
mode. Apparently, nonlinear coupling broadens the radial
structures.

To clarify the effect of nonlinear coupling, we perform
nonlinear computation in which the m = 0 mode is re-
moved. It is known that the m = 0 mode mediates the
coupling between m = 1 modes (with different n values).
As a result, computation without m = 0 modes eliminates
the dominant m = 1 mode coupling. The plasma evolves to
a quasisteady state without sawtooth oscillations. The
Lorentz force is reduced about fourfold across 80% of
the plasma radius, and it becomes unidirectional in the
core. Thus, the flattening of the flow profile does not occur
(Fig. 6), and momentum transport is greatly reduced.

In summary, we have established theoretically that the
Maxwell and Reynolds stresses arising from tearing insta-
bilities can transport momentum rapidly in the RFP. In the
presence of equilibrium flow, a single tearing mode can
transport momentum much more rapidly than classical
viscous forces, as established through quasilinear theory
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FIG. 6. Flow profiles without total fluctuations (dashed line)
and without m = 0 modes (solid line).

and nonlinear MHD computation. Moreover, the inclusion
of multiple tearing modes, resonant at different radii, sub-
stantially increases momentum transport. Nonlinear mode
coupling amplifies the transport. Aspects of the theoretical
results are consistent with experiment (such as the effect of
nonlinear coupling on the phase shift between current and
magnetic field fluctuations in the Maxwell stress).
However, much of the theoretical predictions awaits ex-
perimental test. Future work will also investigate whether
momentum transport by multiple current-driven reconnec-
tions might apply to astrophysical situations, perhaps com-
plementing the well-developed model based on flow-
driven instability.

[1] A.K. Hansen et al., Phys. Rev. Lett. 85, 3408 (2000).

[2] S.A. Balbus and J.F. Hawley, Astrophys. J. 376, 214
(1991).

[3] B. Coppi and P.S. Coppi, Phys. Rev. Lett. 87, 051101
(2001).

(4]
(5]
(6]

(71
(8]

(9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

075003-4

C.C. Hegna, Phys. Plasmas 3, 4646 (1996).

R. Fitzpatrick, Phys. Plasmas 6, 1168 (1999).

D. Dobrott, S. C. Prager, and J. B. Taylor, Phys. Fluids 20,
1850 (1977).

R. K. Pollard and J. B. Taylor, Phys. Fluids 22, 126 (1979).
R. Gatto, P. W. Terry, and C.C. Hegna, Nucl. Fusion 42,
496 (2002).

I. Hofmann, Plasma Phys. 17, 143 (1975).

R.B. Paris and W.N-C. Sy, Phys. Fluids 26, 2966 (1983).
A. Bondeson and M. Persson, Phys. Fluids 29, 2997
(1986).

X.L. Chen and P.J. Morrison, Phys. Fluids B 2, 495
(1990).

J.M. Finn, Phys. Plasmas 2, 4400 (1995).

B. Coppi, J. M. Greene, and J. L. Johnson, Nucl. Fusion 6,
101 (1966).

D.D. Schnack et al., J. Comput. Phys. 70, 330 (1987).
A. Bondeson and J.R. Sobel, Phys. Fluids 27, 2028
(1984).



