
Asymmetric, Helical, and Mirror-Symmetric Traveling Waves in Pipe Flow

Chris C. T. Pringle* and Rich R. Kerswell†

Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
(Received 20 March 2007; published 16 August 2007)

New families of three-dimensional nonlinear traveling waves are discovered in pipe flow. In contrast
with known waves [H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003); H. Wedin and R. R.
Kerswell, J. Fluid Mech. 508, 333 (2004)], they possess no discrete rotational symmetry and exist at a
significantly lower Reynolds numbers (Re). First to appear is a mirror-symmetric traveling wave which is
born in a saddle node bifurcation at Re � 773. As Re increases, ‘‘asymmetric’’ modes arise through a
symmetry-breaking bifurcation. These look to be a minimal coherent unit consisting of one slow streak
sandwiched between two fast streaks located preferentially to one side of the pipe. Helical and nonhelical
rotating waves are also found, emphasizing the richness of phase space even at these very low Reynolds
numbers.
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Wall-bounded shear flows are of tremendous practical
importance, yet their transition to turbulence is still poorly
understood. The oldest and most famous example is the
stability of flow along a straight pipe of circular cross
section first studied over 120 yr ago [1]. A steady, unidirec-
tional, laminar solution always exists, but is only realized
experimentally for lower flow rates (measured by the
Reynolds number Re :� UD=�, whereU is the mean axial
flow speed, D is the pipe diameter, and � is the fluid’s
kinematic viscosity). At higher Re, the fluid selects a state
which is immediately spatially and temporally complex
rather than adopting a sequence of intermediate states of
gradually decreasing symmetry. The exact transition
Reynolds number Ret depends sensitively on the shape
and amplitude of the disturbance present and therefore
varies across experiments with quoted values typically
ranging from 2300 down to a more recent estimate of
1750 [2]. A new direction in understanding such abrupt
transition in this and other wall-bounded shear flows re-
volves around identifying alternative solutions (beyond the
laminar state) to the governing Navier-Stokes equations.
So far, a universal structure has emerged for these solutions
consisting of wavy streaks with staggered quasistreamwise
vortices as found recently in channel [3–6] and pipe flows
[7,8]. In the latter, these solutions take the form of unstable
traveling waves (TWs)—saddle points in phase space—
which appear through saddle node bifurcations. The lowest
bifurcation is found at Reg � 1251, which provides an
upper estimate of when the laminar state stops being a
global attractor. The delay before transition occurs (Ret �
1750) is attributed to the need for phase space to become
sufficiently complicated (through the entanglement of sta-
ble and unstable manifolds of an increasing number of
saddle points) to support turbulent trajectories.

In this Letter, we significantly lower the threshold
Reynolds number Reg for these alternate solutions to ap-
pear from 1251 to 773 by uncovering a new family of
‘‘mirror-symmetric’’ traveling waves. Not only do these

waves preempt existing TWs [7,8], but they appear more
dynamically important given the extremes of their wall
shear stress. They also suffer a symmetry-breaking bifur-
cation to spawn particularly striking ‘‘asymmetric’’ modes,
which represent what looks to be a minimal coherent unit:
one slow streak sandwiched between two fast streaks lo-
cated preferentially to one side of the pipe. Both the mirror-
symmetric and asymmetric modes have no discrete rota-
tional symmetry about the pipe axis in contrast to existing
TWs. The fact that the ratio of Reg to Ret in pipe flow is
now comparable to that for plane Couette flow (Reg �
127:7 [3,6] and Ret � 320 [9]) suggests that the mirror-
symmetric TWs are close to if not the first family of
alternative solutions to appear as Re increases. Helical
and nonhelical rotating waves are also presented to empha-
size the richness of phase space at these low Reynolds
numbers.

The new solutions were captured by inserting a fully
three-dimensional spectral representation [Chebyshev in s,
Fourier in� and z, where (s,�, z) are the usual cylindrical
coordinates aligned with the pipe] of the velocity and
pressure field into the governing Navier-Stokes equations
as viewed from an appropriately rotating and translating
reference frame in which the TW is steady [8]. The result-
ant nonlinear algebraic system was solved using the
Newton-Raphson algorithm [10]. To start the procedure
off, an artificial body force was added to the Navier-Stokes
equations (see [8]) designed to give streamwise-
independent vortices and streaks of a finite amplitude.
The size of the forcing was then adjusted to find a bifurca-
tion point at which the translational flow symmetry along
the pipe is broken. New finite-amplitude solutions to pipe
flow were found if this solution branch could be continued
back to the zero-forcing limit.

The TWs previously isolated [7,8] were induced using a
forcing that was rotationally symmetric under

 R m: �u; v; w; p��s;�; z� ! �u; v; w; p��s;�� 2�=m; z�
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for some m � 2, 3, 4, 5, or 6. As well as this rotational
symmetry, all the TWs also possess the shift-and-reflect
symmetry

 S : �u; v; w; p��s; �; z� ! �u;�v;w; p��s;��; z� �=��;

where � is the base axial wave number (so the periodic
pipe is 2�=� long), and take the form u�s;�; z; t� �
u�s;�; z� Ct�, where C is the a priori unknown axial
phase speed of the wave. In contrast, new rotationally
asymmetric TWs were found by using a forcing function
which created vortices with the radial velocity structure
u�s;�� / <efe�1=s�1� s2�

P7
m�1�1� cos�m�7 �	e

im�g and
hence distributed energy across a band of azimuthal
wave numbers. This choice led to a branch of asymmetric
solutions whose component fast and slow streaks are pref-
erentially located to one side of the pipe (see Fig. 1) just
like the asymmetric wave discovered in channel flow [11].
These asymmetric TWs are S symmetric and have one
phase speed C along the pipe. For the wave number � �
0:75, they extend beyond Re � 5000 and reach down to

Re � 1770, where they arise in a supercritical pitchfork
bifurcation from a mirror-symmetric TW family (see
Fig. 1), which satisfies the additional shift-and-rotate sym-
metry

 

�: �u; v; w; p��s;�; z� ! �u; v; w; p��s;�� �; z� �=��

(coupled with the S symmetry, this implies invariance
under reflection in the line � � 
�=2). The mirror-
symmetric solutions, which also have known channel ana-
logues [4–6], undergo a saddle node bifurcation at much
lower Re: Re � 1167 at � � 0:75, going down to a mini-
mum of Re � 773 at � � 1:44; see Fig. 2. At � � 1:44 the
pitchfork bifurcation which gives rise to the asymmetric
modes is now subcritical with a saddle node bifurcation at
slightly lower Re.

Both new families possess the universal features of such
solutions in wall-bounded shear flows: wavy streaks with
staggered quasistreamwise vortices [3–8]. In a pipe, the
fast streaks near the wall are essentially two-dimensional
aligned with the flow direction, whereas the slow streaks in
the interior have much more streamwise undulation. By
continuity, however, helical TWs should exist with
these fast streaks inclined to the flow direction, and indeed
a surface of such solutions can be found connecting
the upper and lower branches of the mirror-symmetric
TWs (see Fig. 3). These helical TWs take the form
u�s;�; z; t� � u�s;�� ��z� Ct� �!t; z� Ct	 with �
measuring the helicity in the Galilean frame moving at
Cẑ and ! being an azimuthal phase speed relative to the
Galilean frame. Helicity destroys S symmetry, but a modi-
fied form of � symmetry (��) is preserved where the
rotation transformation is now �! �� �1� �

���. The
helicity � and rotational speed ! never rise above

FIG. 1 (color online). Velocity fields for the asymmetric mode
at Re � 2900 (top) and the mirror-symmetric mode at Re �
1344 (bottom) (both at � � 0:75). An instantaneous state is
shown on the left and a streamwise-averaged state on the right.
The coloring indicates the downstream velocity relative to the
parabolic laminar profile: red (dark) through white (light) rep-
resents slow through fast (with zero corresponding to the shading
outside the pipe). In-plane velocity components are shown by
vectors. The maximum and minimum streamwise velocities
(with the laminar flow subtracted) and maximum in-plane speed
for the asymmetric mode are 0.33,�0:42, and 0.03, respectively,
while for the mirror-symmetric mode they are 0.31, �0:43, and
0.08 (all in units of U).
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FIG. 2 (color online). Phase velocity C in units of U as a
function of � for the mirror-symmetric modes (solid lines) and
asymmetric modes (dashed) at 4 values of Re near the saddle
node bifurcation at Re � 773.
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O�10�2� for Re � 1500, confirming the flow preference
for nonrotating, axially aligned streaks. Interestingly, in the
range Re � 1165–1330, the helicity � on this surface
passes through zero twice in going between the two
mirror-symmetric branches (see Fig. 3). These points cor-
respond to an isola in the (fixed �) C vs Re plane of
rotating nonhelical modes, which are neither shift-and-
reflect symmetric nor have any rotational symmetry. The
helical and nonhelical rotating waves look very similar to
the mirror-symmetric modes except for a slight twist in the
streak structure along the pipe (see Figs. 4 and 5). Helical
modes continued off the asymmetric modes have no sym-
metry at all and originate in a symmetry-breaking bifurca-
tion off the ��-symmetric helical solutions extended from
the mirror-symmetric waves: see Fig. 3.

The wall shear stress associated with a TW is a sugges-
tive measure of how ‘‘far’’ the TW is from the laminar state
in phase space, correlating strongly with the numerical
truncation needed for its representation. Figure 6 shows a
nondimensionalized measure of this—the friction factor
� :� 2DG=�U2 (where G is the mean pressure gradient
along the pipe and � the density)—as a function of Re for
all the TWs. The new rotationally asymmetric waves
clearly attain the lowest and the highest wall shear stress
and by implication exist ‘‘nearest’’ and ‘‘further’’ from the
laminar state. The former observation is particularly sig-

nificant since low-friction-factor (lower branch) TWs ap-
pear to sit on a dividing surface in phase space (a separatrix
if the turbulence is a sustained state), which separates
initial conditions which directly relaminarize and those
which lead to a turbulent episode. Numerical simulations
have confirmed this for 4 TWs in pipe flow [12], and for 1
TW in both plane Poiseuille [11] and plane Couette flow
[13]. The new mirror-symmetric and asymmetric TWs [14]
now give points where this dividing surface comes closer
to the laminar state than before and through their stable
manifolds plausibly give the closest point of approach.
This point in phase space gives both the threshold ampli-
tude and optimal structure for a disturbance to the laminar
state not to decay, an issue of considerable current interest
[15–18]. Interestingly, computations using a shooting tech-
nique to converge onto this dividing surface [17] have
found an aperiodic state which, when temporally averaged,
bears a remarkable similarity to the asymmetric TW found
here (compare Fig. 1 at Re � 2900 to Fig. 5 of [17] at
Re � 2875). This implies that more complicated states
which originate through a bifurcation sequence from a
TW can also populate this dividing surface.

The significance of the high friction factors associated
with the upper branch of the mirror-symmetric TWs is their
possible connection with the turbulent state itself. While
there is mounting experimental [19,20] and numerical
evidence [12,21] which indicates that TWs appear as tran-
sient but recurrent coherent structures within transitional
flows, these are not immediately the TWs with highest
friction factors. However, as Re increases, the part of phase
space populated by the turbulent flow appears to expand to
encompass more and more of the high wall shear stress
states, which then assume increasing dynamical impor-
tance [12,22].

The friction factors associated with the helical modes
interpolate between those of the corresponding nonhelical
upper and lower branches. The inset to Fig. 6 shows how
the phase speeds of the new rotationally asymmetric waves
slot naturally into the spectrum of speeds shown by the
rotationally symmetric waves.

FIG. 3. A schematic picture of how all the new traveling wave
branches fit together in (�, Re, C) space (at � � 0:75). The main
parabolic curve in the � � 0 plane is the mirror-symmetric
branch off which the asymmetric branch bifurcates (uppermost
line). Helical branches bulge out of the � � 0 plane and connect
upper and lower parts of the mirror symmetric. Across a finite
range of Re, these helical modes perforate the � � 0 plane in
between the mirror-symmetric branches, creating an isola of
nonhelical rotating TWs (closed dashed-dotted loop). Helical
waves also connect the asymmetric branch and the helical
solutions which originate from the mirror-symmetric solutions.
[solid (dashed) lines indicate confirmed (inferred) behavior].

FIG. 4 (color online). Two velocity slices across a helical
mode taken at the same instant of time but 25D apart with � �
0:75, � � 0:019, ! � �0:0011 at Re � 1344. The velocity
representation is as in Fig. 1.
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The asymmetric, mirror-symmetric, and helical TWs all
represent saddle points in phase space with very low-
dimensional unstable manifolds [e.g., 2 for the asymmetric
mode at ��;Re� � �0:75 1820� and 4 for the mirror-
symmetric mode at ��;Re� � �0:75 1184�]. Their presence
indicates the richness of phase space even at Reynolds
numbers approaching 773. Pipe experiments including
neutrally buoyant particles [23] can show turbulence at
Re � 1000, but for Newtonian fluids, the delay of transi-
tion until Re � 1750 suggests that the establishment of a
‘‘turbulence-bearing’’ scaffold constituted of all their sta-
ble and unstable manifolds is far from immediate. The
clear conclusion is that while the emergence of alternative
solutions to the laminar state seems a necessary precursor

for transition, it is not a good predictor of the actual
Reynolds number at which this occurs in pipe flow (and
other shear flow systems).
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FIG. 6 (color online). Friction factor � against Re for the
various TW families. The lower dashed line indicates the lam-
inar value �lam � 64=Re and the upper dash-dotted line indi-
cates the log-law parametrization of experimental data
1=

����
�
p
� 2:0 log�Re

����
�
p
�. The labels are m values for the rota-

tional symmetry Rm of the different TW families all drawn at the
wave number which leads to the lowest saddle node bifurcation.
The new TWs shown—mirror-symmetric modes (solid) and
asymmetric modes (dashed)—correspond to m � 1 and � �
1:44. The bifurcation point where the asymmetric waves are born
is marked with a dot. The inset shows the phase velocity C (in
units of U) versus Re for all the TWs (upper branch TWs have
smaller phase speeds than lower branch TWs).

FIG. 5 (color online). The four fast streaks of the helical mode shown in Fig. 4 plotted over one � wavelength � 170D.
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